Skip to main content

Advertisement

Log in

Facile synthesis of heterojunctions by hydrothermal decoration of CdS on electrospun BiVO4 nanofibers with boosted photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth vanadate (BiVO4) is a promising photocatalyst material for photocatalytic degradation of organic pollutions. However, the fast recombination of photo-induced charge and insufficient light absorption often lead to poor photocatalytic performance. Herein, novel fibrous BiVO4/CdS (BVO/CdS) heterostructures are constructed by uniformly modifying caterpillar shaped electrospun BiVO4 nanofibers with controllable quantity of CdS nanoparticles through hydrothermal reaction. The absorption of visible light and separation efficiency of photo-generated charge of BiVO4 are significantly promoted after the decoration of CdS nanoparticles. As a result, the photocatalytic efficiency of the optimized BVO/CdS sample (BVO/CdS-2 stands for the sample synthesized with 0.05 mmol Cd(CH3COO)2 and CH4N2S) is 90.43%, which is 3.3 times as high as that of pure BiVO4 after 180 min irradiation under visible light, respectively. Moreover, the .O2 and .OH are the predominant active species for the degradation process indicated by scavengers added photocatalytic experiments. Due to the simple, low-cost and controllable synthetic process, the BVO/CdS heterojunctions are suitable for practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050–17067 (2017)

    Article  CAS  Google Scholar 

  2. T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019)

    Article  CAS  Google Scholar 

  3. T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    Article  CAS  Google Scholar 

  4. A. Malathia, J. Madhavan, M. Ashokkumarb, P. Arunachalamc, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 555, 47–74 (2018)

    Article  CAS  Google Scholar 

  5. L.-G. Peng, H. Wang, J. Liu, M. Sun, F.-R. Ni, M.-J. Chang, H.-L. Du, J. Yang, Fabrication of fibrous BiVO4/Bi2S3/MoS2 heterojunction and synergetic enhancement of photocatalytic activity towards pollutant degradation. J. Solid State Chem. 299, 122195 (2021)

    Article  CAS  Google Scholar 

  6. B. Baral, D.P. Sahoo, K. Parida, Discriminatory {040}-reduction facet/Ag(0) schottky barrier coupled {040/110}-BiVO4@Ag@CoAl-LDH Z-scheme isotype heterostructure. Inorg. Chem. 60, 1698–1715 (2021)

    Article  CAS  Google Scholar 

  7. B. Xiong, Y. Wu, J. Du, J. Li, B. Liu, G. Ke, H. He, Y. Zhou, Cu3Mo2O9/BiVO4 heterojunction films with integrated thermodynamic and kinetic advantages for solar water oxidation. ACS Sustain. Chem. Eng. 8, 14082–14090 (2020)

    Article  CAS  Google Scholar 

  8. Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P.K. Wong, Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 41, 140–153 (2020)

    Article  CAS  Google Scholar 

  9. Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao, B. Liu, Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J. Clean. Prod. 247, 119108 (2020)

    Article  CAS  Google Scholar 

  10. R. Han, M.A. Melo, Z. Zhao, Z. Wu, F.E. Osterloh, Light intensity dependence of photochemical charge separation in the BiVO4/Ru-SrTiO3: Rh direct contact tandem photocatalyst for overall water splitting. J. Phys. Chem. C 124, 9724–9733 (2020)

    Article  CAS  Google Scholar 

  11. W. Zhao, J. Li, B. Dai, Z. Cheng, J. Xu, K. Ma, L. Zhang, N. Sheng, G. Mao, H. Wu, K. Wei, D.Y.C. Leung, Simultaneous removal of tetracycline and Cr(VI) by a novel three-dimensional AgI/BiVO4 p-n junction photocatalyst and insight into the photocatalytic mechanism. Chem. Eng. J. 369, 716–725 (2019)

    Article  CAS  Google Scholar 

  12. G.C. Zhang, J. Zhong, M. Xu, Y. Yang, Y. Li, Z. Fang, S. Tang, D. Yuan, B. Wen, J. Gu, Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chem. Eng. J. 375, 122093 (2019)

    Article  CAS  Google Scholar 

  13. C. Lai, M. Zhang, B. Li, D. Huang, G. Zeng, L. Qin, X. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 358, 891–902 (2019)

    Article  CAS  Google Scholar 

  14. S. Xu, D. Fu, K. Song, L. Wang, Z. Yang, W. Yang, H. Hou, One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem. Eng. J. 349, 368–375 (2018)

    Article  CAS  Google Scholar 

  15. B. Wang, W. Feng, L. Zhang, Y. Zhang, X. Huang, Z. Fang, P. Liu, In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B 206, 510–519 (2017)

    Article  CAS  Google Scholar 

  16. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014)

    Article  CAS  Google Scholar 

  17. A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, P. Yang, Core-shell CdS-Cu2S nanorod array solar cells. Nano Lett. 15, 4096–4101 (2015)

    Article  CAS  Google Scholar 

  18. S. Sharma, S. Singh, N. Khare, Synthesis of polyaniline/CdS (nanoflowers and nanorods) nanocomposites: a comparative study towards enhanced photocatalytic activity for degradation of organic dye. Colloid Polym. Sci. 294, 917–926 (2016)

    Article  CAS  Google Scholar 

  19. F. Ye, H. Li, H. Yu, S. Chen, X. Quan, Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier-separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants. Appl. Catal. B 227, 258–265 (2018)

    Article  CAS  Google Scholar 

  20. N. Clament Sagaya Selvam, Y.G. Kim, D.J. Kim, W.H. Hong, W. Kim, S.H. Park, W.K. Jo, Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants. Sci. Total Environ. 635, 741–749 (2018)

    Article  CAS  Google Scholar 

  21. X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu, Z. Kang, Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B 206, 501–509 (2017)

    Article  CAS  Google Scholar 

  22. Q. Li, Z. Guan, D. Wu, X. Zhao, S. Bao, B. Tian, J. Zhang, Z-Scheme BiOCl-Au-CdS heterostructure with enhanced sunlight driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustain. Chem. Eng. 5, 6958–6968 (2017)

    Article  CAS  Google Scholar 

  23. S. Bao, Q. Wu, S. Chang, B. Tian, J. Zhang, Z-scheme CdS-Au-BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition. Catal. Sci. Technol. 7, 124–133 (2017)

    Article  CAS  Google Scholar 

  24. L. Zou, H. Wang, X. Wang, High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-Scheme process. ACS Sustain. Chem. Eng. 5, 303–309 (2016)

    Article  CAS  Google Scholar 

  25. B. Han, S. Liu, Y.-J. Xu, Z.-R. Tang, 1D CdS nanowires-2D BiVO4 nanosheets heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Adv. 5, 16476–16483 (2015)

    Article  CAS  Google Scholar 

  26. W. Wang, Z.D. Hood, X. Zhang, I.N. Ivanov, Z. Bao, T. Su, M. Jin, L. Bai, X. Wang, R. Zhang, Z. Wu, Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem 12, 3496–3503 (2020)

    Article  CAS  Google Scholar 

  27. Y. Lin, D. Pan, H. Luo, Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process. 121, 105453 (2021)

    Article  CAS  Google Scholar 

  28. R. Guo, A. Yan, J. Xu, B. Xu, T. Li, X. Liu, T. Yi, S. Luo, Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: a discussion on photocatalysis mechanism. J. Alloys Compd. 817, 153246 (2020)

    Article  CAS  Google Scholar 

  29. H. Yang, J. Fan, C. Zhou, Y. Wan, J. Zhang, J. Chen, G. Wang, R. Wang, C. Jiang, A Z-scheme BiVO4/CdS hollow sphere with a high photocatalytic hydrogen evolution activity. Mater. Lett. 280, 128317 (2020)

    Article  CAS  Google Scholar 

  30. M.-J. Chang, W.-N. Cui, J. Liu, K. Wang, H.-L. Du, L. Qiu, S.-M. Fan, Z.-M. Luo, Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis. J. Mater. Sci. Technol. 36, 97–105 (2020)

    Article  Google Scholar 

  31. J. Liu, Q. Hui, M.-J. Chang, W.-N. Cui, T. Xi, L.-D. Wang, M. Sun, B. Yuan, F.-R. Ni, Facile fabrication of fibrous Bi4Ti3O12/Bi2S3/MoS2 with enhanced photocatalytic activities towards pollutant degradation under visible light irradiation. J. Mater. Sci.: Mater. Electron. 31, 17688–17702 (2020)

    Google Scholar 

  32. M. Yu, C. Shang, G. Ma, Q. Meng, Z. Chen, M. Jin, L. Shui, Y. Zhang, Z. Zhang, M. Yuan, X. Wang, G. Zhou, Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance. Appl. Surf. Sci. 481, 255–261 (2019)

    Article  CAS  Google Scholar 

  33. H. Liu, W. Yang, L. Wang, H. Hou, F. Gao, Electrospun BiVO4 nanobelts with tailored structures and their enhanced photocatalytic/photoelectrocatalytic activities. CrystEngComm 19, 6252–6258 (2017)

    Article  CAS  Google Scholar 

  34. M.J. Nalbandian, M. Zhang, J. Sanchez, Y.-H. Choa, D.M. Cwiertny, N.V. Myung, Synthesis and optimization of BiVO4 and co-catalyzed BiVO4 nanofibers for visible light-activated photocatalytic degradation of aquatic micropollutants. J. Mol. Catal. A: Chem. 404–405, 18–26 (2015)

    Article  CAS  Google Scholar 

  35. C. Lv, J. Sun, G. Chen, Y. Zhou, D. Li, Z. Wang, B. Zhao, Organic salt induced electrospinning gradient effect: achievement of BiVO4 nanotubes with promoted photocatalytic performance. Appl. Catal. B 208, 14–21 (2017)

    Article  CAS  Google Scholar 

  36. Z. Liu, Q. Lu, C. Wang, J. Liu, G. Liu, Preparation of bamboo-shaped BiVO4 nanofibers by electrospinning method and the enhanced visible-light photocatalytic activity. J. Alloys Compd. 651, 29–33 (2015)

    Article  CAS  Google Scholar 

  37. M. Zhang, C. Shao, X. Li, P. Zhang, Y. Sun, C. Su, X. Zhang, J. Ren, Y. Liu, Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale 4, 7501–7508 (2012)

    Article  CAS  Google Scholar 

  38. R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren, J. Barber, J.S.C. Loo, L.H. Wong, Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: direct evidence of improved hole diffusion length and charge separation. Electrochim. Acta 211, 173–182 (2016)

    Article  CAS  Google Scholar 

  39. H. Liu, H. Hou, F. Gao, X. Yao, W. Yang, Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities. ACS Appl. Mater. Interfaces. 8, 1929–1936 (2016)

    Article  CAS  Google Scholar 

  40. J. Liu, L. Qiu, M.-J. Chang, B. Yuan, M. Sun, S.-M. Fan, W.-N. Cui, Q. Hui, F.-R. Ni, M.-Y. Li, Y.-Q. Li, Z.-M. Luo, Fabrication of novel fibrous BiVO4/CdS heterostructures by electrospinning method for efficient visible light photodegradation. Mater. Chem. Phys. 247, 122858 (2020)

    Article  CAS  Google Scholar 

  41. M.J. Chang, W.N. Cui, H. Wang, J. Liu, H.L. Li, H.L. Du, L.G. Peng, Recoverable magnetic CoFe2O4/BiOI nanofibers for efficient visible light photocatalysis. Colloids Surf. A 562, 127–135 (2019)

    Article  CAS  Google Scholar 

  42. H. Huang, Y. He, X. Du, P.K. Chu, Y. Zhang, A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain. Chem. Eng. 3, 3262–3273 (2015)

    Article  CAS  Google Scholar 

  43. Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, B. Li, Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB. Catal. Today 264, 250–256 (2016)

    Article  CAS  Google Scholar 

  44. Y. Cheng, T. Wu, L. Xu, C. Liu, Z. Jiang, Q. Zhang, Y. Zou, Y. Chen, J. Li, X. Liu, A novel visible-light-driven ternary magnetic photocatalyst Mn Zn1-Fe2O4/C/CdS: fabrication, characterization and application. Mater. Chem. Phys. 262, 124308 (2021)

    Article  CAS  Google Scholar 

  45. W. Cui, W. An, L. Liu, J. Hu, Y. Liang, Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B. Appl. Surf. Sci. 319, 298–305 (2014)

    Article  CAS  Google Scholar 

  46. J. You, L. Wang, W. Bao, A. Yan, R. Guo, Synthesis and visible-light photocatalytic properties of BiOBr/CdS nanomaterials. J. Mater. Sci. 56, 6732–6744 (2021)

    Article  CAS  Google Scholar 

  47. B. Luo, D. Xu, D. Li, G. Wu, M. Wu, W. Shi, M. Chen, Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl. Mater. Interfaces. 7, 17061–17069 (2015)

    Article  CAS  Google Scholar 

  48. F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang, G. Zeng, Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl. Mater. Interfaces. 8, 32887–32900 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Department of Shaanxi Province (2021JM-386), Provincial Joint Fund of Shaanxi (2021JLM-28) and Outstanding Youth Science Fund of Xi’an University of Science and Technology (2019YQ2-06), Priority Research and Development Foundations of Shaanxi Provincial Government (2021GY-215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, LG., Ni, FR., Liu, J. et al. Facile synthesis of heterojunctions by hydrothermal decoration of CdS on electrospun BiVO4 nanofibers with boosted photocatalytic activity. J Mater Sci: Mater Electron 32, 20891–20902 (2021). https://doi.org/10.1007/s10854-021-06605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06605-y

Navigation