Skip to main content
Log in

FTIR and TL studies of gamma rays irradiated natural quartz

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we have performed the Fourier transform infrared (FTIR) and thermoluminescence (TL) characterizations of gamma-irradiated (dose 0.5–50 kGy) colorless natural quartz of Indian origin. Investigations of structural changes in irradiated quartz crystal in terms of crystallinity index have been carried out based on assignment of infrared bands of SiO4 tetrahedron in the fingerprint mid-infrared region. Colorless quartz containing aluminum as impurity modifies its color to dark smoky after exposure to ionizing radiations. The TL glow curves analysis shows that there are four trapping sites corresponding to four TL peaks at 169, 212, 279 and 370 °C. Chen’s peak shape method and initial rise method have been used to determine the kinetic parameters (order of kinetics, activation energy and frequency factor). The role of [AlSiO4/h+]0 (substitutional center formed on replacement of Si4+ with Al3+ and charge compensated by a hole) centers in color development and as luminescence centers is discussed by making a correlation between FTIR and TL studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.M. Rendell, P.D. Townsend, R.A. Wood, B.J. Luff, Radiat. Meas. 23, 441 (1994)

    Article  CAS  Google Scholar 

  2. A.G. Wintle, A.S. Murray, Radiat. Meas. 29, 81 (1998)

    Article  CAS  Google Scholar 

  3. J.F. de Lima, M.S. Navarro, M.E.G. Valerio, Radiat. Meas. 35, 155 (2002)

    Article  Google Scholar 

  4. V. Pagonis, E. Tatsis, G. Kitis, C. Drupieski, Radiat. Prot. Dosim. 100, 373 (2002)

    Article  CAS  Google Scholar 

  5. G. Kitis, V. Pagonis, H. Carty, E. Tatsis, Radiat. Prot. Dosim. 100, 225 (2002)

    Article  CAS  Google Scholar 

  6. G. Kitis, V. Pagonis, C. Drupieski, Phys. Stat. Sol. (a) 198, 312 (2003)

    Article  CAS  Google Scholar 

  7. G. Polymeris, G. Kitis, V. Pagonis, Radiat. Meas. 41, 554 (2006)

    Article  CAS  Google Scholar 

  8. S.J. Fleming, Thermoluminescence Technique in Archaeology (Clarendon Press, Oxford, 1979)

    Google Scholar 

  9. A.V. Sankaran, K.S.V. Nambi, C.M. Sunta, Proc. Indian Natl. Sci. Acad. 49(1), 18 (1983)

    CAS  Google Scholar 

  10. M.J. Aitken, Thermoluminescence Dating (Academic Press, London, 1985)

    Google Scholar 

  11. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  12. F. Preusser, M.L. Chithambo, T. Gotte, M. Martini, K. Ramseyer, E.J. Sendezeva, G.J. Susino, A.G. Wintle, Earth. Sci. Rev. 97, 184 (2009)

    Article  CAS  Google Scholar 

  13. L.B.F. Souza, P.L. Guzzo, H.J. Khoury, J. Lumin. 130, 1551 (2010)

    Article  CAS  Google Scholar 

  14. P.G. Benny, B.C. Bhatt, Appl. Radiat. Isotopes 56(6), 891 (2002)

    Article  CAS  Google Scholar 

  15. C. Roque, P. Guibert, M. Duttine, E. Vartanian, R. Chapoulie, F. Bechtel, Geochronometria 23, 1 (2004)

    Google Scholar 

  16. G.O. Sawakuchi, E. Okuno, Nucl. Instr. Methods B 218, 217 (2004)

    Article  CAS  Google Scholar 

  17. H.J. Khoury, P.L. Guzzo, L.B.F. Souza, T.M.B. Farias, S. Watanabe, Radiat. Meas. 43, 487 (2008)

    Article  CAS  Google Scholar 

  18. A.N. Yazici, M. Topaksu, J. Phys. D 36, 620 (2003)

    Article  CAS  Google Scholar 

  19. A.D. Franklin, J.R. Prescott, R.B. ScholeDeld, J. Lumin. 63, 317 (1995)

    Article  CAS  Google Scholar 

  20. A.G. Wintle, Geophys. J. R. Astron. Soc. 41, 107 (1975)

    Article  Google Scholar 

  21. V. Pagonis, C. Ankjærgaard, A.S. Murray, M. Jain, R. Chen, J. Lawless, S. Greilich, J. Lumin. 130, 902 (2010)

    Article  CAS  Google Scholar 

  22. B. Subedi, D. Afouxenidis, G.S. Polymeris, K. Bakoglidis, S. Raptis, N.C. Tsirliganis, G. Kitis, Mediterr. Archaeol. Archaeomet. 10, 69 (2010)

    Google Scholar 

  23. M. Topaksu, M. Yüksel, T. Dogan, N. Nur, R. Akkaya, Z. Yegingil, Y. Topak, Phys. B 424, 27 (2013)

    Article  CAS  Google Scholar 

  24. N. Nur, Z. Yegingil, M. Topaksu, K. Kurt, T. Dogan, N. Sarıgul, M. Yuksel, V. Altunal, A. Ozdemir, V. Guckan, I. Gunay, Nucl. Instrum. Methods Phys. Res. B 358, 6 (2015)

    Article  CAS  Google Scholar 

  25. R. Zhou, M.-J. Wei, B. Song, Y. Zhang, Q.-Y. Zhao, B.-L. Pan, T.-F. Li, Nucl. Instrum. Methods Phys. Res. B 375, 32 (2016)

    Article  CAS  Google Scholar 

  26. J.M. Kalita, G. Wary, Nucl. Instrum. Methods Phys. Res. B 383, 177 (2016)

    Article  CAS  Google Scholar 

  27. M. Yüksel, Can. J. Phys. 96(7), 779 (2018)

    Article  CAS  Google Scholar 

  28. M.L. Chithambo, D.E. Folley, S. Chikwembani, J. Lumin. 216, 116730 (2019)

    Article  CAS  Google Scholar 

  29. J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganiccompounds (Butterworths, London, 1975)

    Google Scholar 

  30. J.S. Bhaskar, G. Parthasarathy, N.C. Sarmah, Bull. Mater. Sci. 31(5), 775 (2008)

    Article  CAS  Google Scholar 

  31. C.M. Silva, T.M. Rosseel, M.C. Kirkegaard, Inorg. Chem. 57(6), 3329 (2018)

    Article  CAS  Google Scholar 

  32. L. Douillard, J.P. Duraud, J. Phys. III Fr. 6, 1677 (1996)

    CAS  Google Scholar 

  33. M.A. Parshin, C. Laermans, D.A. Parshin, V.G. Melehin, Phys. B 316–317, 549 (2002)

    Article  Google Scholar 

  34. B. Wang, Y. Yu, I. Pignatelli, G. Sant, M. Bauchy, J. Chem. Phys. 143(2), 024505 (2015)

    Article  CAS  Google Scholar 

  35. L. Hobbs, M. Pascucci, J. Phys. Colloq. 41(C6), C6-237 (1980)

    Google Scholar 

  36. L. Douillard, J. Jollet, J.P. Duraud, R.A.B. Devine, E. Dooryhee, Radiat. Eff. Defects Solids 124(4), 351 (1992)

    Article  CAS  Google Scholar 

  37. F.S. Lameiras, Infrared Radiation (Intech Open, Rijeka, 2012), p. 41

    Google Scholar 

  38. E.H.M. Nunes, V.A.R. Melo, F.S. Lameiras, O.S.R. Liz, A.M. Pinheiro, G.C. Machado, W.L. Vasconcelos, Am. Miner. 94, 935 (2009)

    Article  CAS  Google Scholar 

  39. L.E. Halliburton, N. Koumvakalis, M.E. Markes, J.J. Artin, J. Appl. Phys. 52, 3565 (1981)

    Article  CAS  Google Scholar 

  40. L.E. Halliburton, Int. J. Radiat. Appl. Instrum. Part A 40, 859 (1989)

    Article  CAS  Google Scholar 

  41. M.R. Hantehzadeh, C.S. Han, L.E. Halliburton, J. Phys. Chem. Solids 51, 425 (1990)

    Article  CAS  Google Scholar 

  42. E.H.M. Nunes, F.S. Lameiras, M. Houmard, W.L. Vasconcelos, Radiat. Phys. Chem. 90, 79 (2013)

    Article  CAS  Google Scholar 

  43. K.J. Swyler, P.W. Levy, Proceedings of Princeton University Conference on Partially Ionized and Uranium Plasmas (Princeton University Press, Princeton, 1976), pp. 160–169

    Google Scholar 

  44. S.A. Durrani, K.A.R. Khazal, S.W.S. McKeever, R.J. Riley, Radiat. Eff. 33, 237 (1977)

    Article  CAS  Google Scholar 

  45. F.J. Feigl, W.B. Fowler, K.L. Yip, Solid State Commun. 14, 225 (1974)

    Article  CAS  Google Scholar 

  46. M.B. Jani, L.E. Halliburton, E.F. Kohnke, J. Appl. Phys. 54, 6321 (1983)

    Article  CAS  Google Scholar 

  47. M.B. Jani, R.B. Bossoli, L.E. Halliburton, Phys. Rev. B 27, 2285 (1983)

    Article  CAS  Google Scholar 

  48. S.W.S. McKeever, Nucl. Tracks Radiat. Meas. 18, 5 (1991)

    Article  CAS  Google Scholar 

  49. G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. 60, 574 (1948)

    Article  CAS  Google Scholar 

  50. R. Chen, J. Electrochem. Soc. 116, 1254 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to The Director, Inter-University Accelerator Center (IUAC), New Delhi, for providing the experimental facilities to carry out this work. JNU, New Delhi, is highly acknowledged for providing the gamma irradiation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanpreet K. Sandhu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, A.K., Pandey, O.P. FTIR and TL studies of gamma rays irradiated natural quartz. J Mater Sci: Mater Electron 32, 20767–20776 (2021). https://doi.org/10.1007/s10854-021-06590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06590-2

Navigation