Skip to main content
Log in

Fabrication of Mg3Sb2 thin films via radio-frequency magnetron sputtering and analysis of the corresponding electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric devices based on Seebeck and Peltier effects have attracted attention as a potential green technology. Mg3Sb2 is a promising high-performance thermoelectric material. In this work, Mg3Sb2 polycrystalline thin films were prepared on glass substrates through radio frequency magnetron sputtering using a composite target with Sb chips on an Mg disk plate. Moreover, the dependence on the substrate temperature (Ts) was investigated in the temperature range of room temperature to 773 K. The microstructure of Mg–Sb thin films, including the Mg/Sb chemical composition ratio, constituent phases, and grain size, was considerably affected by the target composition and Ts. Mg3Sb2 exhibited two crystalline phases, cubic and hexagonal. Cubic Mg3Sb2 functioned as a semiconductor with a band gap of 1.92 eV, larger than the reported value of 0.4–0.8 eV for the hexagonal phase. In contrast, the hexagonal Mg3Sb2 thin films exhibited p-type semiconductor properties. The electrical resistivity and Seebeck coefficient were strongly dependent on Ts. At Ts = 773 K, the maximum thermoelectric power factor of 1.29 μW/cm K2 was attained at 670 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Funahashi, Thermoelectric Energy Conversion: Theories and Mechanisms, Materials, Devices, and Applications (Woodhead Publishing, Cambridge, 2021)

    Google Scholar 

  2. O.H. Ando Jr., A.L.O. Maran, N.C. Henao, A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sustain. Energy Rev. 91, 376–393 (2018). https://doi.org/10.1016/j.rser.2018.03.052

    Article  Google Scholar 

  3. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  4. E. Zintl, E. Husemann, Bindungsart und Gitterbau binärer Magnesiumverbindungen. Z. Phys. Chem. 21B, 138–155 (1933). https://doi.org/10.1515/zpch-1933-2112

    Article  Google Scholar 

  5. T. Kajikawa, N. Kimura, T. Yokoyama, M. Umemoto, Y. Shirai, K. Tsuchiya, in Thermoelectric properties of intermetallic compounds: Mg3Bi2 and Mg3Sb2 for medium temperature range thermoelectric elements. Proceedings of the 22nd international conference on thermoelectrics (ICT’03), (2003), p. 305. https://doi.org/10.1109/ICT.2003.1287510

  6. C.L. Condron, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Thermoelectric properties and microstructure of Mg3Sb2. J. Solid State Chem. 179, 2252–2257 (2006). https://doi.org/10.1016/j.jssc.2006.01.034

    Article  CAS  Google Scholar 

  7. H.X. Xin, X.Y. Qin, Electrical and thermoelectric properties of nanocrystal substitutional semiconductor alloys Mg3(BixSb1-x)2 prepared by mechanical alloying. J. Phys. D 39, 5331–5337 (2006). https://doi.org/10.1088/0022-3727/39/24/035

    Article  CAS  Google Scholar 

  8. F. Ahmadpour, T. Kolodiazhnyi, Y. Mozharivskyj, Structural and physical properties of Mg3-xZnxSb2 (x=0–1.34). J. Solid State Chem. 180, 2420–2428 (2007). https://doi.org/10.1016/j.jssc.2007.06.011

    Article  CAS  Google Scholar 

  9. A. Bhardwaj, A. Rajput, A.K. Shukla, J.J. Pulikkotil, A.K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D.K. Misra, R.C. Budhani, Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Adv. 3, 8504–8516 (2013). https://doi.org/10.1039/C3RA40457A

    Article  CAS  Google Scholar 

  10. A. Bhardwaj, D.K. Misra, Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Adv. 4, 34552–34560 (2014). https://doi.org/10.1039/C4RA04889J

    Article  CAS  Google Scholar 

  11. H. Honda, H. Sakaguchi, I. Tanaka, T. Esaka, Anode behaviors of magnesium-antimony intermetallic compound for lithium secondary battery. J. Power Sources 123, 216 (2003). https://doi.org/10.1016/S0378-7753(03)00517-2

    Article  CAS  Google Scholar 

  12. T.S. Moss, Photoconductivity in magnesium antimonide layers. Proc. Phys. Soc. B 63, 982–989 (1950). https://doi.org/10.1088/0370-1301/63/12/303

    Article  Google Scholar 

  13. P. Singh, K.K. Sarkar, Average energy gaps and photoconducting applications of some complicated semiconductors. Solid State Commun. 55, 439–442 (1985). https://doi.org/10.1016/0038-1098(85)90845-2

    Article  CAS  Google Scholar 

  14. J.C. Viala, F. Barbeau, F. Bosselet, M. Peronnet, Characterization of magnesium antimonide Mg3Sb2 at the surface of an Sb-refined AS7G0.3 aluminium alloy. J. Mater. Sci. Lett. 17, 757–760 (1998). https://doi.org/10.1023/A:1006623230949

    Article  CAS  Google Scholar 

  15. Y. Guangyin, S. Yangshan, D. Wenjiang, Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scr. Mater. 43, 1009–1013 (2000). https://doi.org/10.1016/S1359-6462(00)00528-5

    Article  CAS  Google Scholar 

  16. A. Srinivasan, S. Ningshen, U. Kamachi Mudali, U.T.S. Pillai, B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics 15, 1511–1517 (2007). https://doi.org/10.1016/j.intermet.2007.05.012

    Article  CAS  Google Scholar 

  17. A. Li, C. Fu, X. Zhao, T. Zhu, High-performance Mg3Sb2-xBix thermoelectrics progress and perspective. Research (2020). https://doi.org/10.34133/2020/1934848

    Article  Google Scholar 

  18. W. Peng, G. Petretto, G.-M. Rignanese, G. Hautier, A. Zevalkink, An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure. Joule 2, 1879–1893 (2018). https://doi.org/10.1016/j.joule.2018.06.014

    Article  CAS  Google Scholar 

  19. H. Tamaki, H.K. Sato, T. Kanno, Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016). https://doi.org/10.1002/adma.201603955|

    Article  CAS  Google Scholar 

  20. J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017). https://doi.org/10.1038/ncomms13901

    Article  CAS  Google Scholar 

  21. J.-I. Tani, H. Ishikawa, One-step rapid synthesis of n-type Y-doped Mg3Sb2 by pulsed electric current sintering and investigation of its thermoelectric properties. Mater. Lett. 262, 127056 (2020). https://doi.org/10.1016/j.matlet.2019.127056

    Article  CAS  Google Scholar 

  22. J.-I. Tani, H. Ishikawa, Thermoelectric properties of Te-doped Mg3Sb2 synthesized by spark plasma sintering. Phys. B 588, 412173 (2020). https://doi.org/10.1016/j.physb.2020.412173

    Article  CAS  Google Scholar 

  23. J.-I. Tani, H. Ishikawa, Thermoelectric properties of La- and Sc-doped Mg3Sb2 synthesized via pulsed electric current sintering. J. Mater. Sci. Mater. Electron. 31, 7724–7730 (2020). https://doi.org/10.1007/s10854-020-03308-8

    Article  CAS  Google Scholar 

  24. A.A. Nayeb-Hashemi, J.B. Clark, The Mg−Sb (magnesium-antimony) system. Bull. of Alloy Phase Diagr. 5, 579–584 (1984). https://doi.org/10.1007/BF02868320

    Article  Google Scholar 

  25. M. Li, F. Igbari, Z.-K. Wang, L.-S. Liao, Indoor thin-film photovoltaics: progress and challenges. Adv. Energy Mater. 10, 2000641 (2020). https://doi.org/10.1002/aenm.202000641

    Article  CAS  Google Scholar 

  26. K. Kanahashi, J. Pu, T. Takenobu, 2D Materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020). https://doi.org/10.1002/aenm.201902842

    Article  CAS  Google Scholar 

  27. P.J. Kelly, R. Darnell, Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  CAS  Google Scholar 

  28. E. Greene, Tracing the recorded history of thin-film sputter deposition: from the1800s to 2017. Vac. Sci. Technol. A 35, 05C204 (2017). https://doi.org/10.1116/1.4998940

    Article  CAS  Google Scholar 

  29. M. Tokita, Spark plasma sintering (SPS) method, systems and applications, in Handbook of advanced ceramics: materials, applications, processing and properties, 2nd edn., ed. by S. Somiya (Academic Press, London, 2013), pp. 1149–1178

    Chapter  Google Scholar 

  30. S.A. Campbell, Fabrication Engineering at the Micro- and Nanoscale (Oxford University Press, Oxford, 2008)

    Google Scholar 

  31. L.J. van der Pauw, A method of measuring specific resistivity and Hall effect of disc of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  32. L.G. Sevast’yanova, O.V. Kravchenko, O.K. Gulish, V.A. Stupnikov, M.E. Leonova, M.G. Zhizhin, Binary and ternary compounds in the Mg-Sb-B and Mg-Bi-B systems as catalysts for the synthesis of cubic BN. Inorg. Mater. 42, 863–866 (2006). https://doi.org/10.1134/S0020168506080115

    Article  CAS  Google Scholar 

  33. M. Sedighi, B.A. Nia, H. Zarringhalam, R. Moradian, First principles investigation of magnesium antimonite semiconductor compound in two different phases under hydrostatic pressure. Phys. B 406, 3149–3153 (2011). https://doi.org/10.1016/j.physb.2011.04.060

    Article  CAS  Google Scholar 

  34. S. Ding, R. Su, W. Cui, J. Hao, J. Shi, Y. Li, High-pressure phases and properties of the Mg3Sb2 compound. ACS Omega 49, 31902–31907 (2020). https://doi.org/10.1021/acsomega.0c04797

    Article  CAS  Google Scholar 

  35. I. Kogut, M.-C. Record, Magnesium silicide thin film formation by reactive diffusion. Thin Solid Films 522, 149–158 (2012). https://doi.org/10.1016/j.tsf.2012.08.037

    Article  CAS  Google Scholar 

  36. M. Safavi, N. Martin, V. Linseis, F. Palmino, A. Billard, M.A. Yazdi, Thermoelectric properties improvement in Mg2Sn thin films by structural modification. J. Alloys Compd. 797, 1078–1085 (2019). https://doi.org/10.1016/j.jallcom.2019.05.214

    Article  CAS  Google Scholar 

  37. G.A. Roberts, E.J. Cairns, J.A. Reimer, An electrochemical and XRD study of lithium insertion into mechanically alloyed magnesium stannide. J. Electrochem. Soc. 150, A912–A916 (2003). https://doi.org/10.1149/1.1578477

    Article  CAS  Google Scholar 

  38. S. Gates-Rector,  T. Blanton, The powder diffraction file: a quality materials characterization database. Powder Diffr.  34, 352–360 (2019). ICDD PDF No. 01-080-4038. https://doi.org/10.1017/S0885715619000812

  39. J.-I. Tani, H. Ishikawa, Thermoelectric properties of Mg2Sn thin films fabricated using radio frequency magnetron sputtering. Thin Solid Films 692, 137601 (2019). https://doi.org/10.1016/j.tsf.2019.137601

    Article  CAS  Google Scholar 

  40. A.K.S. Aqili, A. Maqsood, Determination of thickness, refractive index, and thickness irregularity for semiconductor thin films from transmission spectra. Appl. Opt. 41, 218–224 (2002). https://doi.org/10.1364/AO.41.000218

    Article  CAS  Google Scholar 

  41. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  42. A. Bhardwaj, A.K. Shukla, S.R. Dhakate, D.K. Misra, Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Adv. 5, 11058 (2015). https://doi.org/10.1039/C4RA15456H

    Article  CAS  Google Scholar 

  43. S. Kim, C. Kim, Y.-K. Hong, T. Onimaru, K. Suekuni, T. Takabatake, Thermoelectric properties of Mn-doped Mg–Sb single crystals. J. Mater. Chem. 2, 12311–12316 (2014). https://doi.org/10.1039/C4TA02386B

    Article  CAS  Google Scholar 

  44. S. Ohno, K. Imasato, S. Anand, H. Tamaki, S.D. Kang, P. Gorai, H.K. Sato, E.S. Toberer, T. Kanno, G.J. Snyder, Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2, 141–154 (2018). https://doi.org/10.1016/j.joule.2017.11.005

    Article  CAS  Google Scholar 

  45. J. Li, S. Zhang, S. Zheng, Z. Zhang, B. Wang, L. Chen, G. Lu, Defect chemistry for N-type doping of Mg3Sb2-based thermoelectric materials. J. Phys. Chem. C 123, 20781–20788 (2019). https://doi.org/10.1021/acs.jpcc.9b05859

    Article  CAS  Google Scholar 

  46. I.A. Nishida, I.J. Ohsugi, in Thermoelectrics –principles and applications–. ed. by R. Sakata (Realize. Inc., Tokyo, 2001), pp. 39–82

    Google Scholar 

  47. J. Shuai, Y. Wang, H.S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, Z. Ren, Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2. Acta Mater. 93, 187–193 (2015). https://doi.org/10.1016/j.actamat.2015.04.023

    Article  CAS  Google Scholar 

  48. K.X. Zhang, X.Y. Qin, H.X. Xin, H.J. Li, J. Zhang, Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1-xCdx)3Sb2 doped with Ag. J. Alloys Compd. 484, 498–504 (2009). https://doi.org/10.1016/j.jallcom.2009.04.130

    Article  CAS  Google Scholar 

  49. L. Song, J. Zhang, B.B. Iversen, Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. J. Mater. Chem. A 5, 4932–4939 (2017). https://doi.org/10.1039/C6TA08316A

    Article  CAS  Google Scholar 

  50. Y. Fu, X. Zhang, H. Liu, J. Tian, J. Zhang, Thermoelectric properties of Ag-doped compound: Mg3-xAgxSb2. J. Materiomics 4, 75–79 (2018). https://doi.org/10.1016/j.jmat.2017.12.002

    Article  Google Scholar 

  51. C. Chen, X. Li, S. Li, X. Wang, Z. Zhang, J. Sui, F. Cao, X. Liu, Q. Zhang, Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. J. Mater. Sci. 53, 16001–16009 (2018). https://doi.org/10.1007/s10853-018-2555-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Grants-in-Aid for Scientific Research (C) (Nos. 18K04791 and 21K04718) from the Ministry of Education, Sports, and Culture, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Tani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tani, Ji., Ishikawa, H. Fabrication of Mg3Sb2 thin films via radio-frequency magnetron sputtering and analysis of the corresponding electrical properties. J Mater Sci: Mater Electron 32, 19499–19510 (2021). https://doi.org/10.1007/s10854-021-06468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06468-3

Navigation