Skip to main content

Advertisement

Log in

Thermoelectric properties of La- and Sc-doped Mg3Sb2 synthesized via pulsed electric current sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-efficiency thermoelectric materials that convert heat into electricity are considered as a countermeasure against greenhouse gas emissions and global warming. In this regard, Mg3Sb2-based Zintl compounds, such as Mg3(Sb, Bi)2 and Mg3Sb2–Mg3Bi2, are inexpensive yet suitable candidates in the medium-temperature range due to low-toxicity and relative abundance of their constituent elements. However, n-type Mg3Sb2 without Bi possesses superior oxidation resistance. This study aimed to investigate the suitability of Sc and La as candidates for n-type Mg3Sb2 dopants. La-doped and Sc-doped Mg3Sb2 (Mg3Sb2Mx [M = La, Sc]; x = 0.000 to 0.05) were synthesized by a one-step, rapid pulsed electric current sintering using Mg, Sb, and a small amount of hydrate (La(OH)3) or oxide (Sc2O3). Electron backscatter diffraction revealed that the average grain sizes for the La-doped (x = 0.03) and Sc-doped (x = 0.05) Mg3Sb2 were 17 and 38 μm, respectively. The room temperature maximum electron concentration for the La-doped and Sc-doped Mg3Sb2 increased up to 2.3 × 1019 and 3.7 × 1019 cm−3, respectively, which is comparable to or higher than the maximum values obtained for the reported n-type Te-doped Mg3Sb2 (approximately 2 × 1019 cm−3). The maximum dimensionless thermoelectric figure of merit values for the La-doped and Sc-doped Mg3Sb2 at 770 K were 0.93 and 0.80, respectively, indicating that Sc and La are promising doping candidates for achieving higher ZT values in n-type Mg3Sb2 without Bi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O.H. Ando Jr., A.L.O. Maran, N.C. Henao, Renew. Sustain. Energy Rev. 91, 376–393 (2018)

    Article  Google Scholar 

  2. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, X. Zhao, Appl. Energy 143, 1–25 (2015)

    Article  Google Scholar 

  3. N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, Energy Rep. (2019). https://doi.org/10.1016/j.egyr.2019.12.011

    Article  Google Scholar 

  4. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  5. T. Kajikawa, N. Kimura, T. Yokoyama, in Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE, Cat. No.03TH8726, 2003), p. 305–308

  6. C.L. Condron, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, J. Solid State Chem. 179, 2252–2257 (2006)

    Article  CAS  Google Scholar 

  7. A. Bhardwaj, A. Rajput, A.K. Shukla, J.J. Pulikkotil, A.K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D.K. Misra, R.C. Budhani, RSC Adv. 3, 8504–8516 (2013)

    Article  CAS  Google Scholar 

  8. J. Shuai, Y. Wang, H.S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, Z. Ren, Acta Mater. 93, 187–193 (2015)

    Article  CAS  Google Scholar 

  9. A. Bhardwaj, N.S. Chauhan, D.K. Misra, J. Mater. Chem. A 3, 10777–10786 (2015)

    Article  CAS  Google Scholar 

  10. A. Bhardwaj, N.S. Chauhan, S. Goel, V. Singh, J.J. Pulikkotil, T.D. Senguttuvan, D.K. Misra, Phys. Chem. Chem. Phys. 18, 6191–6200 (2016)

    Article  CAS  Google Scholar 

  11. H. Tamaki, H.K. Sato, T. Kanno, Adv. Mater. 28, 10182–10187 (2016)

    Article  CAS  Google Scholar 

  12. J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Nat. Commun. 8, 13901 (2017)

    Article  CAS  Google Scholar 

  13. J. Mao, Y. Wu, S. Song, Q. Zhu, J. Shuai, Z. Liu, Y. Pei, Z. Ren, ACS Energy Lett. 2, 2245–2250 (2017)

    Article  CAS  Google Scholar 

  14. K. Imasato, S.D. Kang, S. Ohno, Mater. Horiz. 5, 59–64 (2018)

    Article  CAS  Google Scholar 

  15. J. Zhang, L. Song, A. Mamakhel, M.R.V. Jørgensen, B.B. Iversen, Chem. Mater. 29, 5371–5383 (2017)

    Article  CAS  Google Scholar 

  16. S. Song, J. Mao, J. Shuai, H. Zhu, Z. Ren, U. Saparamadu, Z. Tang, B. Wang, Z. Ren, Appl. Phys. Lett. 112, 092103 (2018)

    Article  Google Scholar 

  17. P. Gorai, E.S. Toberer, V. Stevanović, J. Appl. Phys. 125, 025105 (2019)

    Article  Google Scholar 

  18. P. Gorai, B.R. Ortiz, E.S. Toberer, V. Stevanović, J. Mater. Chem. A 6, 13806–13815 (2018)

    Article  CAS  Google Scholar 

  19. K. Imasato, M. Wood, J.J. Kuo, G.J. Snyder, J. Mater. Chem. A 6, 19941–19946 (2018)

    Article  CAS  Google Scholar 

  20. S.W. Song, J. Mao, M. Bordelon, R. He, Y.M. Wang, J. Shuai, J.Y. Sun, X.B. Lei, Z.S. Ren, S. Chen, S. Wilson, K. Nielsch, Q.Y. Zhang, Z.F. Ren, Mater. Today Phys. 8, 25–33 (2019)

    Article  Google Scholar 

  21. X. Shi, T. Zhao, X. Zhang, C. Sun, Z. Chen, S. Lin, W. Li, H. Gu, Y. Pei, Adv. Mater. 31, e1903387 (2019)

    Article  Google Scholar 

  22. Y. Wang, X. Zhang, Y. Wang, H. Liu, J. Zhang, Phys. Status Solidi A 216, 1800811 (2019)

    Article  Google Scholar 

  23. S. Ohno, K. Imasato, S. Anand, H. Tamaki, S.D. Kang, P. Gorai, H.K. Sato, E.S. Toberer, T. Kanno, G.J. Snyder, Joule 2, 141–154 (2018)

    Article  CAS  Google Scholar 

  24. R. Shu, Y. Zhou, Q. Wang, Z. Han, Y. Zhu, Y. Liu, Y. Chen, M. Gu, W. Xu, Y. Wang, W. Zhang, L. Huang, W. Liu, Adv. Funct. Mater. 29, 1807235 (2019)

    Article  Google Scholar 

  25. J. Tani, H. Ishikawa, Mater. Lett. 262, 127056 (2020)

    Article  CAS  Google Scholar 

  26. J. Zhang, L. Song, B.B. Iversen, Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201912909

    Article  Google Scholar 

  27. L.J. van der Pauw, Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  28. M. Ozawa, R. Onoe, H. Kato, J. Alloys Compd. 408–412, 556–559 (2006)

    Article  Google Scholar 

  29. T. Kanno, H. Tamaki, H.K. Sato, S.D. Kang, S. Ohno, K. Imasato, J.J. Kuo, G.J. Snyder, Y. Miyazaki, Appl. Phys. Lett. 112, 033903 (2018)

    Article  Google Scholar 

  30. M. Martinez-Ripoll, A. Haase, G. Brauer, Acta Cryst. B30, 2006–2009 (1974)

    Article  CAS  Google Scholar 

  31. L.G. Sevast’yanova, O.V. Kravchenko, O.K. Gulish, V.A. Stupnikov, M.E. Leonova, M.G. Zhizhin, Inorg. Mater. 42, 863–866 (2006)

    Article  Google Scholar 

  32. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976), p. 20

    Google Scholar 

  33. E. Zintl, E. Husemann, Zeitschrift für Physikalische Chemie 21B, 138–155 (1933)

    Article  Google Scholar 

  34. J. Tani, M. Takahashi, H. Kido, Phys. B 405, 4219–4225 (2010)

    Article  CAS  Google Scholar 

  35. W. Peng, G. Petretto, G.-M. Rignanese, G. Hautier, A. Zevalkink, Joule 2, 1879–1893 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Grants-in-Aid for Scientific Research (C) (No. 18K04791) from the Ministry of Education, Sports, and Culture, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Tani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tani, Ji., Ishikawa, H. Thermoelectric properties of La- and Sc-doped Mg3Sb2 synthesized via pulsed electric current sintering. J Mater Sci: Mater Electron 31, 7724–7730 (2020). https://doi.org/10.1007/s10854-020-03308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03308-8

Navigation