Skip to main content

Advertisement

Log in

Design of electrochromic supercapacitor based on rGO–W18O49 nanowires/polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An electrochromic supercapacitor is a new type of multifunctional device. It can store energy, change its optical properties, and its color can intuitively reflect the energy storage of the device in real time. This study focused on W18O49 nanowires (WNS) and polyaniline (PANI) electrochromic materials and their thin-film electrodes. Graphene oxide was incorporated in the process of solvothermal preparation of WNS and graphene/W18O49 nanowires composite (rGO–WNS) was obtained. Compared with WNS, the electron transport capability of rGO–WNS is improved, which effectively reduce the discoloration time from 7 to 4 s and the coloring time from 10 to 2 s. In addition, the coloration efficiency has also improved from 45.37 to 52.72 cm−2·C−1, however, the optical modulation amplitude of the composite is reduced from 35 to 20% due to the obstruction of graphene to the transmittance. A characteristic pseudocapacitive behavior is observed for rGO–WNS and PANI electrodes, which were assembled in pairs to form an EC supercapacitor (ECSC) device. With the voltage increased from − 0.2 to 1.4 V, the color of ECSC varies among light green, dark green, light blue and dark blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. W.M. Kline, R.G. Lorenzini, G.A. Sotzing, A review of organic electrochromic fabric devices. Color. Technol. 130(2), 73–80 (2014)

    Article  CAS  Google Scholar 

  2. W. Wu, M. Wang, J. Ma et al., Electrochromic metal oxides: recent progress and prospect. Adv. Electron. Mater. 4(8), 1800185 (2018)

    Article  CAS  Google Scholar 

  3. D. Ma, J. Wang, Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Sci. China Chem. 60(1), 54–62 (2017)

    Article  CAS  Google Scholar 

  4. S.M. Cho, T. Kim, C.S. Ah et al., Electrochromic device with self-diffusing function for light adaptable displays. Sol. Energy Mater. Sol. Cells 177, 89–96 (2018)

    Article  CAS  Google Scholar 

  5. L. Liu, S.K. Karuturi, L.T. Su et al., Electrochromic photonic crystal displays with versatile color tunability. Electrochem. Commun. 13(11), 1163–1165 (2011)

    Article  CAS  Google Scholar 

  6. S. Kim, X. Kong, M. Taya, Electrochromic windows based on anodic electrochromic polymesitylenes containing 9H-carbazole-9-ethanol moieties. Sol. Energy Mater. Sol. Cells 117, 183–188 (2013)

    Article  CAS  Google Scholar 

  7. J. Wang, Y. Lu, H. Li et al., Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139(29), 9921–9926 (2017)

    Article  CAS  Google Scholar 

  8. P. Yang, P. Sun, Z. Chai et al., Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Ed. 53(44), 11935–11939 (2014)

    Article  CAS  Google Scholar 

  9. K.J. Patel, G.G. Bhatt, J.R. Ray et al., All-inorganic solid-state electrochromic devices: a review. J. Solid State Electrochem. 21(2), 337–347 (2017)

    Article  CAS  Google Scholar 

  10. R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27(1), 2–18 (2006)

    Article  CAS  Google Scholar 

  11. J. Lee, Y. Kim, Y. Kim et al., Multi-color electrochromic device based on organic electrochromic materials. Mol. Cryst. Liq. Cryst. 491(1), 74–79 (2008)

    Article  CAS  Google Scholar 

  12. S. Xiong, S. Yin, Y. Wang et al., Organic/inorganic electrochromic nanocomposites with various interfacial interactions: a review. Mater. Sci. Eng., B 221, 41–53 (2017)

    Article  CAS  Google Scholar 

  13. S. Fan, R.W. Liu, W.T. Zheng et al., Highly oriented lamellar polyaniline films via electrochemical polymerization and post-growth annealing. RSC Adv. 7(7), 3819–3822 (2017)

    Article  CAS  Google Scholar 

  14. Y.C. Her, C.C. Chang, Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties. CrystEngComm 16, 5379–5386 (2014)

    Article  CAS  Google Scholar 

  15. J.Z. Ou, S. Balendhran, M.R. Field et al., The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4(19), 5980–5988 (2012)

    Article  CAS  Google Scholar 

  16. M. Gratzel, Ultrafast colour displays. Nature 409(6820), 575–576 (2001)

    Article  CAS  Google Scholar 

  17. H. Gu, C. Guo, S. Zhang et al., Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 12(1), 559–567 (2018)

    Article  CAS  Google Scholar 

  18. Y.M. Hsu, C.Y. Wang, P. Chang et al., Non-stoichiometric W18O49-xSx nanowires for wide spectrum photosensors with high internal gain. Nanoscale 7(3), 901–907 (2015)

    Article  CAS  Google Scholar 

  19. M. Yu, H. Sun, X. Sun et al., 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Mater. Lett. 108, 29–32 (2013)

    Article  CAS  Google Scholar 

  20. L.N. Jin, P. Liu, C. Jin et al., Porous WO3/graphene/polyester textile electrode materials with enhanced electrochemical performance for flexible solid-state supercapacitors. J. Colloid Interface Sci. 510, 1–11 (2018)

    Article  CAS  Google Scholar 

  21. Y. Li, L. Yan, J. Zhang et al., Preparation of graphene/W18O49 nanorod composites and their application in electrochromic performance. J. Mater. Sci.: Mater. Electron. 30(22), 20181–20188 (2019)

    CAS  Google Scholar 

  22. P.T. Yin, S. Shah, M. Chhowalla et al., Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)

    Article  CAS  Google Scholar 

  23. S. Stankovich, D.A. Dikin, G.H.B. Dommett et al., Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  24. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  CAS  Google Scholar 

  25. Y. Liang, Y. Li, H. Wang et al., Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135(6), 2013–2036 (2013)

    Article  CAS  Google Scholar 

  26. J.C. Pramudita, D. Pontiroli, G. Magnani et al., Graphene and selected derivatives as negative electrodes in sodium- and lithium-ion batteries. ChemElectroChem 2(4), 600–610 (2015)

    Article  CAS  Google Scholar 

  27. C. Xu, J. Zhu, R. Yuan et al., More effective use of graphene in photocatalysis by conformal attachment of small sheets to TiO2 spheres. Carbon 96, 394–402 (2016)

    Article  CAS  Google Scholar 

  28. M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)

    Article  CAS  Google Scholar 

  29. E. Singh, H.S. Nalwa, Graphene-based bulk-heterojunction solar cells: a review. J. Nanosci. Nanotechnol. 15(9), 6237–6278 (2015)

    Article  CAS  Google Scholar 

  30. Y. Ye, L. Dai, Graphene-based Schottky junction solar cells. J. Mater. Chem. 22(46), 24224–24229 (2012)

    Article  CAS  Google Scholar 

  31. J. Wei, Z. Zang, Y. Zhang et al., Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. OptLett. 42(5), 911–914 (2017)

    CAS  Google Scholar 

  32. Z. Zang, X. Zeng, M. Wang et al., Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sens. Actuators, B Chem. 252, 1179–1186 (2017)

    Article  CAS  Google Scholar 

  33. K. Choi, S.J. Yoo, Y. Sung et al., High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly. Chem. Mater. 18(25), 5823–5825 (2006)

    Article  CAS  Google Scholar 

  34. B.C. Thompson, P. Schottland, G. Sonmez et al., In situ colorimetric analysis of electrochromic polymer films and devices. Synth. Met. 119(1), 333–334 (2001)

    Article  CAS  Google Scholar 

  35. S. Bhadra, D. Khastgir, N.K. Singha et al., Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)

    Article  CAS  Google Scholar 

  36. G. Li, L. Gao, L. Li et al., An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J. Alloys Compd. 786, 40–49 (2019)

    Article  CAS  Google Scholar 

  37. H. Wei, X. Yan, S. Wu et al., Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J. Phys. Chem. C 116(47), 25052–25064 (2012)

    Article  CAS  Google Scholar 

  38. M.V. Kulkarni, A.K. Viswanath, R. Marimuthu et al., Spectroscopic, transport, and morphological studies of polyaniline doped with inorganic acids. Polym. Eng. Sci. 44(9), 1676–1681 (2004)

    Article  CAS  Google Scholar 

  39. R. Yuksel, C. Durucan, H.E. Unalan, Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J. Alloy. Compd. 658, 183–189 (2016)

    Article  CAS  Google Scholar 

  40. L. Zhang, S. Xiong, J. Ma et al., A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide. Sol. Energy Mater. Sol. Cells 93(5), 625–629 (2009)

    Article  CAS  Google Scholar 

  41. G.F. Cai, J.P. Tu, D. Zhou et al., Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122, 51–58 (2014)

    Article  CAS  Google Scholar 

  42. A.C. Nwanya, C.J. Jafta, P.M. Ejikeme et al., Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method. Electrochim. Acta 128, 218–225 (2014)

    Article  CAS  Google Scholar 

  43. Y. Tian, S. Cong, W. Su et al., Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 14(4), 2150–2156 (2014)

    Article  CAS  Google Scholar 

  44. J. Zhang, J. Tu, G. Du et al., Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics. Sol. Energy Mater. Sol. Cells 114, 31–37 (2013)

    Article  CAS  Google Scholar 

  45. P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2015)

    Article  CAS  Google Scholar 

  46. F. Grote, Z.Y. Yu, J.L. Wang et al., Self-stacked reduced graphene oxide nanosheets coated with cobalt–nickel hydroxide by one-step electrochemical deposition toward flexible electrochromic supercapacitors. Small 11(36), 4666–4672 (2015)

    Article  CAS  Google Scholar 

  47. X.L. Chen, H.J. Lin, J. Deng et al., Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)

    Article  CAS  Google Scholar 

  48. G.Q. Li, L.X. Gao, L.D. Li et al., An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J Alloys Compd. 786, 40–49 (2019)

    Article  CAS  Google Scholar 

  49. Z.Y. Li, B.Y. Wang, Y. Tian et al., High performance electrochromic poly(5-cyanoindole)/TiO2 nanocomposite material for intelligent supercapacitor. Synth. Met. 277, 116785 (2021)

    Article  CAS  Google Scholar 

  50. W.J. Li, F.Y. Yuan, N. Xu et al., Triphenylamine-triazine polymer materials obtained by electrochemical polymerization: Electrochemistry stability, anions trapping behavior and electrochromic-supercapacitor application. Electrochim. Acta 384, 138344 (2021)

    Article  CAS  Google Scholar 

  51. H. Xu, Y. Zhu, M. Zhang et al., Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor. Ionics 26(10), 5199–5210 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (11475017). We are also grateful towards Mr. Wang Hao from Beijing University of Technology for his help in situ UV–Vis transmittance spectra measurement.

Funding

This study was supported by National Natural Science Foundation of China (11475017).

Author information

Authors and Affiliations

Authors

Contributions

YL performed the experiment, LY contributed significantly to analysis and manuscript preparation, LZ and CD helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Luting Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, L., Zhang, L. et al. Design of electrochromic supercapacitor based on rGO–W18O49 nanowires/polyaniline. J Mater Sci: Mater Electron 32, 19179–19190 (2021). https://doi.org/10.1007/s10854-021-06439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06439-8

Navigation