Skip to main content

Advertisement

Log in

Self-healable PVA–graphite–borax as electrode and electrolyte properties for smart and flexible supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the energy-storage potential of PVA/borax material for practical usage is investigated according to the doping level of graphite. For this purpose, cyclic voltammetry (CV), Raman spectrometry, and optical microscopy characterization techniques are employed. The characterization results indicate that the energy-storage capacity of PVA/borax increases along with graphite-doping level. However, as the amount of graphite doping increases, the polymer loses its self-healing properties. Even though 50% doping provides higher capacitance value, its unstable behavior and lack of self-healing make it unfavorable. On the other hand, 10% doping samples exhibit modest capacitance with good self-healing and supercapacitive properties for both electrolyte and electrode applications. The results highlighted that the fabricated PVA/graphite/borax (PGB) samples can be utilized for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Kawai, X. Hu, Appl. Microbiol. Biotechnol. 84, 227 (2009)

    Article  CAS  Google Scholar 

  2. T. Zhao, X. Ji, P. Bi, W. Jin, C. Xiong, A. Dang, H. Li, T. Li, S. Shang, Z. Zhou, Electrochim. Acta 230, 342 (2017)

    Article  CAS  Google Scholar 

  3. A. Alabadi, X. Yang, Z. Dong, Z. Li, B. Tan, J. Mater. Chem. A 2, 11697 (2014)

    Article  CAS  Google Scholar 

  4. J. Ben, Z. Song, X. Li, Nanoscale Res. Lett. 15, 151 (2020)

    Article  CAS  Google Scholar 

  5. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)

    Article  CAS  Google Scholar 

  6. M. Haripriya, R. Sivasubramanian, A.M. Ashok, S. Hussain, G. Amarendra, J. Mater. Sci. Mater. Electron. 30, 7497 (2019)

    Article  CAS  Google Scholar 

  7. T. Cheng, Y. Zhang, J. Zhang, W.-Y. Lai, W. Huang, J. Mater. Chem. A 4, 10493 (2016)

    Article  CAS  Google Scholar 

  8. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, Adv. Mater. 22, 3723 (2010)

    Article  CAS  Google Scholar 

  9. X.-Y. Zhang, S.-H. Sun, X.-J. Sun, Y.-R. Zhao, L. Chen, Y. Yang, W. Lü, D.-B. Li, Light. Sci. Appl. 5, e16130 (2016)

  10. A.-N. Kawde, N. Baig, M. Sajid, RSC Adv. 6, 91325 (2016)

    Article  CAS  Google Scholar 

  11. S. Demirel, M.R. Akgun, R. Topkaya, A. Kocyigit, K. Cicek, Inorg. Chem. Commun. 122, 108268 (2020)

    Article  CAS  Google Scholar 

  12. J. Han, T. Lei, Q. Wu, Cellulose 20, 2947 (2013)

    Article  CAS  Google Scholar 

  13. S. Dai, S. Wang, X. Dong, X. Xu, X. Cao, Y. Chen, X. Zhou, J. Ding, N. Yuan, J. Mater. Chem. C 7, 14581 (2019)

    Article  CAS  Google Scholar 

  14. Z. Wang, F. Tao, Q. Pan, J. Mater. Chem. A 4, 17732 (2016)

    Article  CAS  Google Scholar 

  15. E. Al-Emam, H. Soenen, J. Caen, K. Janssens, Herit. Sci. 8, 106 (2020)

    Article  Google Scholar 

  16. L. Ding, L. Chen, L. Hu, X. Feng, Z. Mao, H. Xu, B. Wang, X. Sui, Carbohydr. Polym. 255, 117331 (2021)

    Article  CAS  Google Scholar 

  17. A.S. Kipcak, E. Moroydor Derun, S. Piskin, J. Chem. 329238, 1 (2013)

    Article  Google Scholar 

  18. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

  19. Y. Shi, D. Xiong, J. Li, K. Wang, N. Wang, RSC Adv. 7, 1045 (2017)

    Article  CAS  Google Scholar 

  20. S. Leikin, V.A. Parsegian, W.-H. Yang, G.E. Walrafen, PNAS 94, 11312 (1997)

    Article  CAS  Google Scholar 

  21. D.K. Buslov, N.I. Sushko, O.N. Tretinnikov, Polym. Sci. Ser. A 53, 1121 (2011)

    Article  CAS  Google Scholar 

  22. N.H.N. Azman, M.S.M.M. Nazir, L.H. Ngee, Y. Sulaiman, Int. J. Energy Res. 42, 2104 (2018)

    Article  CAS  Google Scholar 

  23. I. Krupa, I. Novák, I. Chodák, Synth. Met. 145, 245 (2004)

    Article  CAS  Google Scholar 

  24. W. Zheng, S.-C. Wong, Compos. Sci. Technol. 63, 225 (2003)

    Article  CAS  Google Scholar 

  25. I.-H. Kim, Y.G. Jeong, J. Polym. Sci. B Polym. Phys. 48, 850 (2010)

    Article  CAS  Google Scholar 

  26. V. Zólyomi, J. Koltai, J. Kürti, Phys. Status Solidi B 248, 2435 (2011)

    Article  Google Scholar 

  27. B.H. Michael, in Electrical Measurement, Signal Processing, and Displays, ed. by J.G. Webster, (CRC Press, Boca Raton, 2003), p. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Demirel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicek, K., Demirel, S. Self-healable PVA–graphite–borax as electrode and electrolyte properties for smart and flexible supercapacitor applications. J Mater Sci: Mater Electron 32, 16335–16345 (2021). https://doi.org/10.1007/s10854-021-06186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06186-w

Navigation