Skip to main content
Log in

The flexible pressure-sensitive adhesive graphene-based composite heater based on the laminating structure for de-icing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The laminating flexible pressure-sensitive adhesive graphene-based composite heater (FPGH) coupled with advantages of excellent Joule heating performance, thermal stability, conductive anisotropy, and mechanical properties is prepared by the tape casting method. Meanwhile, the heater shows eco-friendly and light-weight features, which can be applied as the shape-costuming flexible de-icing heater on various substrates. The heating temperature reaches 142.9 °C at a bias voltage of 6 V with low power of around 2.1 W. Moreover, the T5min (the surface temperature of the FPGH after applying a voltage for five minutes) remains stable after 4000 folds. Additionally, the heater can be directly adhered to different substrate surfaces by applying pressure due to the excellent pressure-sensitive adhesive property of the styrene-butadiene rubber (SBR) layer. Besides, the conductive anisotropy also prevents electric leakage. The de-icing rate (12 V) of FPGH is 28 times higher than that of the pure SBR, and its electrical conductivity remains almost invariant even at cryogenic temperature environments. The results confirm that the FPGH is a promising and competitive heater for de-icing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Zhou, J. Zhu, N. An, C. Wang, J. Liu, L. Long, Electr Electron. Eng. 15, 593–600 (2020)

    Google Scholar 

  2. S.K. Thomas, R.P. Cassoni, C.D. MacArthur, J. Aircr. 33, 841–854 (1996)

    Article  Google Scholar 

  3. O. Parent, A. Ilinca, Cold Reg. Sci. 65, 88–96 (2011)

    Article  Google Scholar 

  4. O. Fakorede, Z. Feger, H. Ibrahim, A. Ilinca, J. Perron, C. Masson, Renewable Sustainable Energy Rev. 65, 662–675 (2016)

    Article  Google Scholar 

  5. Y. Wang, Y. Xu, Y. Lei, Renewable Energy 118, 1015–1023 (2018)

    Article  Google Scholar 

  6. K.X. Wei, Y. Yang, H.Y. Zuo, D.Q. Zhong, Wind Energy 23, 433–457 (2020)

    Article  Google Scholar 

  7. A. Khadak, B. Subeshan, R. Asmatulu, J. Mater. Sci 56, 3078–3094 (2020)

    Article  Google Scholar 

  8. M. Pourbagian, W.G. Habashi, Int. J. Heat Fluid Flow 54, 167–182 (2015)

    Article  Google Scholar 

  9. X. Liu, Y. Xing, L. Zhao, IOP Conf. Ser.: Mater. Sci. Eng. 394, 032106 (2018)

    Article  Google Scholar 

  10. Y. Wang, Y. Xu, Q. Huang, Renewable Sustainable Energy Rev. 79, 638–645 (2017)

    Article  Google Scholar 

  11. T.-B. Nguyen, S. Park, H. Lim, Appl. Surf. Sci. 435, 585–591 (2018)

    Article  CAS  Google Scholar 

  12. N. Akhtar, G. Anemone, D. Farias, B. Holst, Carbon 141, 451–456 (2019)

    Article  CAS  Google Scholar 

  13. J.-H. Ha, S.-K. Hong, J.-K. Ryu, J. Bae, S.-H. Park, Polymers 11, 2101 (2019)

    Article  CAS  Google Scholar 

  14. G. Heydari, E. Thormann, M. Järn, E. Tyrode, P.M. Claesson, J. Phys. Chem. C 117, 21752–21762 (2013)

    Article  CAS  Google Scholar 

  15. A.S. Van Dyke, D. Collard, M.M. Derby, A.R. Betz, Appl. Phys. Lett. 107, 141602 (2015)

    Article  Google Scholar 

  16. B. Wu, X. Cui, H. Jiang, N. Wu, C. Peng, Z. Hu, X. Liang, Y. Yan, J. Huang, D. Li, J. Colloid Interface Sci. 590, 301–310 (2021)

    Article  CAS  Google Scholar 

  17. Q. Li, Z.J. Guo, Mater. Chem. A 6, 13549–13581 (2018)

    Article  CAS  Google Scholar 

  18. H. Zhao, Z. Wu, S. Wang, J. Zheng, G. Che, Cold Reg. Sci. Technol. 65, 413–420 (2011)

    Article  Google Scholar 

  19. K. Chu, D.-J. Yun, D. Kim, H. Park, S.-H. Park, Org. Electron. 15, 2734–2741 (2014)

    Article  CAS  Google Scholar 

  20. S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Article  CAS  Google Scholar 

  21. N. Karim, M. Zhang, S. Afroj, V. Koncherry, P. Potluri, K.S. Novoselov, RSC Adv. 8, 16815–16823 (2018)

    Article  CAS  Google Scholar 

  22. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)

    Article  Google Scholar 

  23. B. Nan, K. Wu, Y. Liu, L. Xiao, W. Chen, E. Jiao, Z. Tan, G. Chen, M. Lu, J. Mater. Sci.: Mater. Electron. 30, 19928–19939 (2019)

    CAS  Google Scholar 

  24. O. Redondo, S.G. Prolongo, M. Campo, C. Sbarufatti, M. Giglio, Compos. Sci. Technol. 164, 65–73 (2018)

    Article  CAS  Google Scholar 

  25. A.R. Raji, T. Varadhachary, K. Nan, T. Wang, J. Lin, Y. Ji, B. Genorio, Y. Zhu, C. Kittrell, J.M. Tour, ACS Appl. Mater. Interfaces 8, 3551–3556 (2016)

    Article  CAS  Google Scholar 

  26. L. Vertuccio, F. De Santis, R. Pantani, K. Lafdi, L. Guadagno, Compos. B 162, 600–610 (2019)

    Article  CAS  Google Scholar 

  27. T. Wang, Y. Zheng, A.R. Raji, Y. Li, W.K. Sikkema, J.M. Tour, ACS Appl. Mater. Interfaces 8, 14169–14173 (2016)

    Article  CAS  Google Scholar 

  28. M. Mohseni, A. Amirfazli, Cold Reg. Sci. Technol. 87, 47–58 (2013)

    Article  Google Scholar 

  29. J. Bustillos, C. Zhang, B. Boesl, A. Agarwal, ACS Appl. Mater. Interfaces 10, 5022–5029 (2018)

    Article  CAS  Google Scholar 

  30. T.Y. Zhang, H.M. Zhao, D.Y. Wang, Q. Wang, Y. Pang, N.Q. Deng, H.W. Cao, Y. Yang, T.L. Ren, Nanoscale 9, 14357–14363 (2017)

    Article  CAS  Google Scholar 

  31. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, Y. Chen, Small 7, 3186–3192 (2011)

    Article  CAS  Google Scholar 

  32. F. Wang, W. Wang, X. Mu, J. Mao, Chem. Eng. J. 170, 395 (2020)

    Google Scholar 

  33. X. Li, J. Cai, Y. Shi, Y. Yue, D. Zhang, ACS Appl. Mater. Interfaces 9, 1593–1601 (2017)

    Article  CAS  Google Scholar 

  34. Q. Ma, J. Wang, X. Dong, W. Yu, G. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)

    Article  CAS  Google Scholar 

  35. J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung, E.S. Kim, S.J. Chae, T.Q. Huy, N. Van Luan, Y.H. Lee, Adv. Funct. Mater. 22, 4819–4826 (2012)

    Article  CAS  Google Scholar 

  36. H.-S. Jang, S.K. Jeon, S.H. Nahm, Carbon 48, 4019–4023 (2010)

    Article  CAS  Google Scholar 

  37. T.-Y. Zhang, H.-M. Zhao, Z. Yang, Q. Wang, D.-Y. Wang, N.-Q. Deng, Y. Yang, T.-L. Ren, Appl. Phys. Lett. 109, 151905 (2016)

    Article  Google Scholar 

  38. Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Adv. Mater. 24, 3426–3431 (2012)

    Article  CAS  Google Scholar 

  39. C.-I. Chang, K.-H. Chang, H.-H. Shen, C.-C. Hu, J. Taiwan Inst. Chem. Eng. 45, 2762–2769 (2014)

    Article  CAS  Google Scholar 

  40. I.Y. Denisyuk, K.Y. Logushkova, M.I. Fokina, M.V. Uspenskaya, Opt. Spectrosc. 125, 918–920 (2019)

    Article  Google Scholar 

  41. J.-K. Lee, S. Yamazaki, D.-H. Kim, G.-T. Kim, U. Dettlaff-Weglikowska, S. Roth, Phys. Status Solidi (b) 249, 2534–2537 (2012)

    Article  CAS  Google Scholar 

  42. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  43. M. Haluška, D. Obergfell, J.C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D.H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, Klitzing K. v. Phys. Status Solidi (b) 244, 4143–4146 (2007)

    Article  Google Scholar 

  44. L. Yang, T. Niu, H. Zhang, W. Xu, M. Zou, L. Xu, G. Cao, A. Cao, 2D Mater. 4, 041001 (2017)

    Article  Google Scholar 

  45. F. Wang, J. Mao, Fullerenes. Nanotubes, Carbon Nanostruct. 26, 61–68 (2018)

    Article  CAS  Google Scholar 

  46. F. Wang, H. Wang, J. Mao, J. Mater. Sci. 54, 36–61 (2018)

    Article  Google Scholar 

  47. X. Yang, L. Li, S. Shang, X.-M. Tao, Polymer 51, 3431–3435 (2010)

    Article  CAS  Google Scholar 

  48. P. Zeng, B. Tian, Q. Tian, W. Yao, M. Li, H. Wang, Y. Feng, L. Liu, W. Wu, Adv. Mater. Technol. 4, 1800453 (2019)

    Article  Google Scholar 

  49. M. Zhang, C. Wang, X. Liang, Z. Yin, K. Xia, H. Wang, M. Jian, Y. Zhang, Adv. Electron. Mater. 3, 1700193 (2017)

    Article  Google Scholar 

  50. F. Wang, J. Mao, J. Appl. Polym. Sci. 136, 46939 (2019)

    Article  Google Scholar 

  51. T. Ma, H.L. Gao, H.P. Cong, H.B. Yao, L. Wu, Z.Y. Yu, S.M. Chen, S.H. Yu, Adv. Mater. 30, 1706435 (2018)

    Article  Google Scholar 

  52. Z.-H. Xu, X. Li, Adv. Funct. Mater. 21, 3883–3888 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, F. & Mao, J. The flexible pressure-sensitive adhesive graphene-based composite heater based on the laminating structure for de-icing applications. J Mater Sci: Mater Electron 32, 13994–14005 (2021). https://doi.org/10.1007/s10854-021-05975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05975-7

Navigation