Skip to main content

Advertisement

Log in

3D Burr-like Pt nanoparticles as co-catalyst decorated on TiO2 nanotubes: an effective hydrogen production photoanode with enhanced photoelectrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Noble metal Pt nanoparticles are typically decorated on photocatalyst as co-catalyst to reach reasonable photocatalytic performance. Hence, improving the photocatalytic efficiency with the use of minimum amount of Pt is very imperative and challenging due to the low abundance and high cost of Pt. In this study, a new strategy has been developed to fabricate 3D burr-like Pt nanoparticles co-catalyst on TiO2 nanotube arrays via chemical alloying–dealloying method. It is noteworthy that in the first step, highly dispersed and uniform PtNi alloy particles were prepared by adding a certain amount of surfactant PVP and Triton X-100, and then the Pt nanoparticles with burr-like structure were obtained by the next acid dealloying treatment. Compared with reference samples loaded with pure bulk Pt nanoparticles (either big or small size) or bigger burr-like Pt nanoparticles, the obtained TiO2 nanotubes loaded with ultra-fine burr-like Pt co-catalysts showed excellent photoelectrochemical water splitting for hydrogen production. The optimized sample showed more than 4 times enhancement in the H2 production activity compared with reference sample which was loaded with pure bulk Pt particle. We ascribed this beneficial effect to the following factor: the ultra-dispersed Pt co-catalysts with burr-like structure provide a larger specific surface area and more branches as combinative sites with TiO2 which form more effective Schottky junction to drive the separation of photogenerated holes and e and also inhibit their recombination. The present study provides a facile and effective route to design high-performance photoelectrode with burr-like Pt nanoparticles as co-catalysts for photoelectrochemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, W. Choi, A.Z. Moshfegh, Energy Environ. Sci. 12, 59–95 (2019)

    Article  CAS  Google Scholar 

  2. R. Bao, C. Chen, J. Xia, H. Chen, H. Li, J. Mater. Chem. C 7, 4981–4987 (2019)

    Article  CAS  Google Scholar 

  3. Y.Q. Qu, X.F. Duan, Chem. Soc. Rev. 42, 2568–2580 (2013)

    Article  CAS  Google Scholar 

  4. B.Q. Zhang, L.H. He, T.T. Yao, W.J. Fan, X.T. Zhang, S. Wen, J.Y. Shi, C. Li, Chemsuschem 12, 1026–1032 (2019)

    Article  CAS  Google Scholar 

  5. T.T. Yao, X.R. An, H.X. Han, J.Q. Chen, C. Li, Adv. Energy Mater. 8, 1800210 (2018)

    Article  Google Scholar 

  6. R.G. Li, C. Li, Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts, vol. 60, 1st edn. (Elsevier Inc., Amsterdam, 2017).

    Google Scholar 

  7. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  8. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  9. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  10. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  11. T.L. Thompson, J.T. Yates, Top. Catal. 35, 197–210 (2005)

    Article  CAS  Google Scholar 

  12. A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 112, 1555–1614 (2012)

    Article  CAS  Google Scholar 

  13. A. Primo, A. Corma, H. García, Phys. Chem. Chem. Phys. 13, 886–910 (2011)

    Article  CAS  Google Scholar 

  14. K. Lee, R. Hahn, M. Altomare, E. Selli, P. Schmuki, Adv. Mater. 25, 6133–6137 (2013)

    Article  CAS  Google Scholar 

  15. J. Yang, X.R. Sun, R. Wang, M.X. Zhu, W.X. Yang, H.S. Huang, W.B. Shi, Int. J. Hydrogen Energy. 45, 12702–12710 (2020)

    Article  CAS  Google Scholar 

  16. G. Cha, M. Altomare, N. Truong Nguyen, N. Taccardi, K. Lee, P. Schmuki, Chem. Asian J. 12, 314–323 (2017)

    Article  CAS  Google Scholar 

  17. N.T. Nguyen, M. Altomare, J.E. Yoo, N. Taccardi, P. Schmuki, Adv. Energy Mater. 6, 1–7 (2016)

    Article  Google Scholar 

  18. P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology 29, 014002 (2017)

    Article  Google Scholar 

  19. M.J. Liu, P.F. Xia, L.Y. Zhang, B. Cheng, J.G. Yu, ACS Sustain. Chem. Eng. 6, 10472–10480 (2018)

    Article  CAS  Google Scholar 

  20. M.Y. Liu, X.Q. Wang, J. Liu, K.W. Wang, S.B. Jin, B. Tan, A.C.S. Appl, Mater. Interfaces 12, 12774–12782 (2020)

    Article  Google Scholar 

  21. P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, Nano Res. 9, 3478–3493 (2016)

    Article  CAS  Google Scholar 

  22. J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46, 1900–1909 (2013)

    Article  CAS  Google Scholar 

  23. J.B. Joo, R. Dillon, I. Lee, Y. Yin, C.J. Bardeen, F. Zaera, Proc. Natl. Acad. Sci. 111, 7942–7947 (2014)

    Article  CAS  Google Scholar 

  24. M.H. Luo, W.F. Yao, C.P. Huang, Q. Wu, Q.J. Xu, J. Mater. Chem. A. 3, 13884–13891 (2015)

    Article  CAS  Google Scholar 

  25. S.W. Cao, J. Jiang, B.C. Zhu, J.G. Yu, Phys. Chem. Chem. Phys. 18, 19457–19463 (2016)

    Article  CAS  Google Scholar 

  26. L. Ji, D. Spanu, N. Denisov, S. Recchia, P. Schmuki, M. Altomare, Chem. Asian J. 15, 301–309 (2020)

    Article  CAS  Google Scholar 

  27. Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125, 7772–7773 (2003)

    Article  CAS  Google Scholar 

  28. T. Fujita, Sci. Technol. Adv. Mater. 18, 724–740 (2017)

    Article  CAS  Google Scholar 

  29. R. Ron, D. Gachet, K. Rechav, A. Salomon, Adv. Mater. 29, 1–7 (2017)

    Google Scholar 

  30. W. Luc, F. Jiao, ACS Catal. 7, 5856–5861 (2017)

    Article  CAS  Google Scholar 

  31. X.W. Guo, J.H. Han, P. Liu, L.Y. Chen, Y. Ito, Z.L. Jian, T.N. Jin, A. Hirata, F.J. Li, T. Fujita, Sci. Rep. 6, 33466 (2016)

    Article  CAS  Google Scholar 

  32. F. Gobal, M. Faraji, Electrochim. Acta. 100, 133–139 (2013)

    Article  CAS  Google Scholar 

  33. G.F. Han, L. Gu, X.Y. Lang, B.B. Xiao, Z.Z. Yang, Z. Wen, Q. Jiang, ACS. Appl. Mater. Interfaces 8, 32910–32917 (2016)

    Article  CAS  Google Scholar 

  34. B. Geboes, J. Ustarroz, K. Sentosun, H. Vanrompay, A. Hubin, S. Bals, T. Breugelmans, ACS Catal. 6, 5856–5864 (2016)

    Article  CAS  Google Scholar 

  35. L.L. Bi, X.P. Gao, Z.C. Ma, L.J. Zhang, D.J. Wang, T.F. Xie, ChemCatChem 9, 3779–3785 (2017)

    Article  CAS  Google Scholar 

  36. X. Zhong, L. Wang, Z. Zhuang, X. Chen, J. Zheng, Y. Zhou, G. Zhuang, X. Li, J. Wang, Adv. Mater. Interfaces. 4, 1601029 (2017)

    Article  Google Scholar 

  37. K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106, 1869–1877 (2002)

    Article  CAS  Google Scholar 

  38. J.L. Shui, J.W. Zhang, J.C.M. Li, J. Mater. Chem. 21, 6225–6229 (2011)

    Article  CAS  Google Scholar 

  39. J.E. Yoo, K. Lee, M. Altomare, E. Selli, P. Schmuki, Angew. Chemie Int. Ed. 52, 7514–7517 (2013)

    Article  CAS  Google Scholar 

  40. K. Zhang, Q.L. Yue, G.F. Chen, Y.L. Zhai, L. Wang, H.S. Wang, J.S. Zhao, J.F. Liu, J.B. Jia, H.B. Li, J. Phys. Chem. C 115, 379–389 (2011)

    Article  CAS  Google Scholar 

  41. T. Nishimura, T. Morikawa, M. Yokoi, Electrochim. Acta. 54, 499–505 (2008)

    Article  CAS  Google Scholar 

  42. H.A. Atwater, A. Polman, Nat. Mater. 9(3), 205–213 (2010)

    Article  CAS  Google Scholar 

  43. H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Corros. Sci. 49, 203–210 (2007)

    Article  CAS  Google Scholar 

  44. P. Deák, J. Kullgren, B. Aradi, T. Frauenheim, L. Kavan, Electrochim. Acta. 199, 27–34 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open subject of State key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-18-06) and Youth Fund for Dominant Subjects of Northeast Petroleum University (2018YSXK-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Yu, R., Wang, L. et al. 3D Burr-like Pt nanoparticles as co-catalyst decorated on TiO2 nanotubes: an effective hydrogen production photoanode with enhanced photoelectrochemical performance. J Mater Sci: Mater Electron 32, 11737–11750 (2021). https://doi.org/10.1007/s10854-021-05800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05800-1

Navigation