Skip to main content

Advertisement

Log in

Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

TiO2 nanotubes have been demonstrated with promising future in photoelectrocatalytic (PEC)_ applications and deposition of Pt nanoparticles on TiO2 has been widely used to enhance their PEC activities. However, those Pt nanoparticles are normally randomly deposited on the surface of TiO2 nanotubes. Selective deposition of Pt nanoparticles is important to achieve better charge separation. In this study, we reported an electrochemical activation step to prepare TiO2 nanotubes deposited with Pt nanoparticles on their open ends. The “activation step” played a key role in achieving a clean surface of the TiO2 nanotubes, thus ensuring the uniform growth of Pt nanoparticles and efficient photogenerated electrons transportation. The Pt-A-TiO2 films have photocatalytic activities in hydrogen generation and methyl orange degradation with a high hydrogen generation rate of 0.74 mL/h/cm2, three times that of the pure TiO2 nanotubes (0.24 mL/h/cm2). Thus, this study demonstrated an effective method for improving the performance of Pt/TiO2 photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, and H.M. Cheng: Titanium dioxide crystals with tailored facets. Chem. Rev. 114 (19), 9559 (2014).

    Article  CAS  Google Scholar 

  2. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114 (19), 9919 (2014).

    Article  CAS  Google Scholar 

  3. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114 (19), 9890 (2014).

    Article  CAS  Google Scholar 

  4. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44 (7), 1861 (2015).

    Article  CAS  Google Scholar 

  5. A. Sinhamahapatra, J.P. Jeon, and J.S. Yu: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8 (12), 3539 (2015).

    Article  CAS  Google Scholar 

  6. M. Dahl, Y. Liu, and Y. Yin: Composite titanium dioxide nanomaterials. Chem. Rev. 114 (19), 9853 (2014).

    Article  CAS  Google Scholar 

  7. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114 (19), 9987 (2014).

    Article  CAS  Google Scholar 

  8. K. Lee, A. Mazare, and P. Schmuki: One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 114 (19), 9385 (2014).

    Article  CAS  Google Scholar 

  9. S.W. Shin, J.Y. Lee, K.S. Ahn, S.H. Kang, and J.H. Kim: Visible light absorbing TiO2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J. Phys. Chem. C 119 (24), 13375 (2015).

    Article  CAS  Google Scholar 

  10. Y. Xue, Y. Sun, G. Wang, K. Yan, and J. Zhao: Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. Electrochim. Acta 155 (10), 312 (2015).

    Article  CAS  Google Scholar 

  11. V.R. Subramanian, S. Sarker, B. Yu, A. Kar, X. Sun, and S.K. Dey: TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. J. Mater. Res. 28 (3), 280 (2013).

    Article  CAS  Google Scholar 

  12. F.X. Xiao, S.F. Hung, J. Miao, H.Y. Wang, H. Yang, and B. Liu: Metal-cluster-decorated TiO2 nanotube arrays: A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 11 (5), 554 (2015).

    Article  CAS  Google Scholar 

  13. J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3 (2), 300 (2007).

    Article  CAS  Google Scholar 

  14. G.L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli: Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production. ACS Catal. 6 (2), 1345 (2016).

    Article  CAS  Google Scholar 

  15. D. Regonini, A. Groff, G.D. Sorarù, and F.J. Clemens: Photoelectrochemical study of anodized TiO2 nanotubes prepared using low and high H2O contents. Electrochim. Acta 186 (20), 101 (2015).

    Article  CAS  Google Scholar 

  16. D. Wang, B. Yu, C. Wang, F. Zhou, and W. Liu: A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 21 (19), 1964 (2009).

    Article  CAS  Google Scholar 

  17. D. Wang, Y. Liu, B. Yu, F. Zhou, and W. Liu: TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance. Chem. Mater. 21 (7), 1198 (2009).

    Article  CAS  Google Scholar 

  18. A. Ghicov and P. Schmuki: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 2791 (2009).

    Article  CAS  Google Scholar 

  19. J. Wang and Z. Lin: Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 113 (10), 4026 (2009).

    Article  CAS  Google Scholar 

  20. L. Qi, Z. Yin, S. Zhang, Q. Ouyang, C. Li, and Y. Chen: The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J. Mater. Res. 29 (6), 745 (2014).

    Article  CAS  Google Scholar 

  21. S. Karthik, K.M. Gopal, E.P. Haripriya, Y. Sorachon, P. Maggie, K.V. Oomman, and A.G. Craig: Highly-ordered TiO2 nanotube arrays up to 220 µm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18 (6), 065707 (2007).

    Article  CAS  Google Scholar 

  22. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, and C.A. Grimes: Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 110 (33), 16179 (2006).

    Article  CAS  Google Scholar 

  23. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, and C.A. Grimes: TiO2 nanotube arrays of 1000 µm length by anodization of titanium Foil: Phenol red diffusion. J. Phys. Chem. C 111 (41), 14992 (2007).

    Article  CAS  Google Scholar 

  24. S.P. Albu, A. Ghicov, J.M. Macak, and P. Schmuki: 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi RRL 1 (2), R65 (2007).

    Article  CAS  Google Scholar 

  25. P. Roy, S. Berger, and P. Schmuki: TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 50 (13), 2904 (2011).

    Article  CAS  Google Scholar 

  26. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107 (7), 2891 (2007).

    Article  CAS  Google Scholar 

  27. X. Luan, D. Guan, and Y. Wang: Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116 (27), 14257 (2012).

    Article  CAS  Google Scholar 

  28. S.T. Nishanthi, B. Sundarakannan, E. Subramanian, and D. Pathinettam Padiyan: Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renewable Energy 77, 300 (2015).

    Article  CAS  Google Scholar 

  29. B. Chen and K. Lu: Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir 28 (5), 2937 (2012).

    Article  CAS  Google Scholar 

  30. D. Guan and Y. Wang: Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Nanoscale 4 (9), 2968 (2012).

    Article  CAS  Google Scholar 

  31. H. Li, L. Zheng, S. Shu, H. Cheng, and Y.Y. Li: Morphology control of anodic TiO2 nanomaterials via cold work pretreatment of Ti foils. J. Electrochem. Soc. 158 (10), C346 (2011).

    Article  CAS  Google Scholar 

  32. D. Kim, A. Ghicov, S.P. Albu, and P. Schmuki: Bamboo-type TiO2 Nanotubes: Improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130 (49), 16454 (2008).

    Article  CAS  Google Scholar 

  33. S.P. Albu, D. Kim, and P. Schmuki: Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. 120 (10), 1942 (2008).

    Article  Google Scholar 

  34. H. Li, J.W. Cheng, S. Shu, J. Zhang, L. Zheng, C.K. Tsang, H. Cheng, F. Liang, S.T. Lee, and Y.Y. Li: Selective removal of the outer shells of anodic TiO2 nanotubes. Small 9 (1), 37 (2013).

    Article  CAS  Google Scholar 

  35. J.Y. Kim, K. Zhu, N.R. Neale, and A.J. Frank: Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization. Nano Convergence 1 (1), 1 (2014).

    Article  CAS  Google Scholar 

  36. M.M. Momeni and M.G. Hosseini: Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation. Nanochem. Res. 1 (1), 9 (2016).

    CAS  Google Scholar 

  37. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu: High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116 (10), 129 (2014).

    Article  CAS  Google Scholar 

  38. D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, and D. Li: Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6 (11), 8001 (2014).

    Article  CAS  Google Scholar 

  39. N.T. Nguyen, M. Altomare, J.E. Yoo, N. Taccardi, and P. Schmuki: Noble metals on anodic TiO2 nanotube mouths: Thermal dewetting of minimal Pt Co-catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv. Energy Mater. 6 (2), 1501926 (2016).

    Article  CAS  Google Scholar 

  40. A. Bumajdad and M. Madkour: Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys. Chem. Chem. Phy. 16 (16), 7146 (2014).

    Article  CAS  Google Scholar 

  41. N.T. Nguyen, M. Altomare, J. Yoo, and P. Schmuki: Efficient photocatalytic H2 evolution: Controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27 (20), 3208 (2015).

    Article  CAS  Google Scholar 

  42. R. Su, R. Tiruvalam, A.J. Logsdail, Q. He, C.A. Downing, M.T. Jensen, N. Dimitratos, L. Kesavan, P.P. Wells, R. Bechstein, H.H. Jensen, S. Wendt, C.R.A. Catlow, C.J. Kiely, G.J. Hutchings, and F. Besenbacher: Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), 3490 (2014).

    Article  CAS  Google Scholar 

  43. N.T. Nguyen, J. Yoo, M. Altomare, and P. Schmuki: “Suspended” Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 50 (68), 9653 (2014).

    Article  CAS  Google Scholar 

  44. Y. Yan, T. Chen, Y. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31 (10), 1383 (2016).

    Article  CAS  Google Scholar 

  45. S. Li, Q. Tao, D. Li, and Q. Zhang: Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J. Mater. Res. 29 (21), 2497 (2014).

    Article  CAS  Google Scholar 

  46. R.P. Antony, T. Mathews, C. Ramesh, N. Murugesan, A. Dasgupta, S. Dhara, S. Dash, and A. Tyagi: Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrogen Energy 37 (10), 8268 (2012).

    Article  CAS  Google Scholar 

  47. Y. Lai, J. Gong, and C. Lin: Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int. J. Hydrogen Energy 37 (8), 6438 (2012).

    Article  CAS  Google Scholar 

  48. Y. Liu, K. Mu, G. Yang, H. Peng, F. Shen, L. Wang, S. Deng, X. Zhang, and Y. Zhang: Fabrication of a coral/double-wall TiO2 nanotube array film electrode with higher photoelectrocatalytic activity under sunlight. New J. Chem. 39 (5), 3923 (2015).

    Article  CAS  Google Scholar 

  49. M. Altomare, M. Pozzi, M. Allieta, L.G. Bettini, and E. Selli: H2 and O2 photocatalytic production on TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity. Appl. Catal., B 136–137 (5), 81 (2013).

    Article  CAS  Google Scholar 

  50. H. Li, Z. Chen, C.K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan, and Y.Y. Li: Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2 (1), 229 (2014).

    Article  CAS  Google Scholar 

  51. X. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331 (6018), 746 (2011).

    Article  CAS  Google Scholar 

  52. T. Xia, N. Li, Y. Zhang, M.B. Kruger, J. Murowchick, A. Selloni, and X. Chen: Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl. Mater. Interfaces 5 (20), 9883 (2013).

    Article  CAS  Google Scholar 

  53. Y. Zhang, C.X. Harris, P. Wallenmeyer, J. Murowchick, and X. Chen: Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem. C 117 (45), 24015 (2013).

    Article  CAS  Google Scholar 

  54. K.S. Mun, S.D. Alvarez, W.Y. Choi, and M.J. Sailor: A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano. 4 (4), 2070 (2010).

    Article  CAS  Google Scholar 

  55. F. Liang, T.L. Kelly, L-b. Luo, H. Li, M.J. Sailor, and Y.Y. Li: Self-cleaning organic vapor sensor based on a nanoporous TiO2 interferometer. ACS Appl. Mater. Interfaces 4 (8), 4177 (2012).

    Article  CAS  Google Scholar 

  56. L. Zheng, H. Cheng, F. Liang, S. Shu, C.K. Tsang, H. Li, S-T. Lee, and Y.Y. Li: Porous TiO2 photonic band gap materials by anodization. J. Phys. Chem. C 116 (9), 5509 (2012).

    Article  CAS  Google Scholar 

  57. J. Yu, L. Qi, and M. Jaroniec: Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114 (30), 13118 (2010).

    Article  CAS  Google Scholar 

  58. F. Zhang, J. Chen, X. Zhang, W. Gao, R. Jin, N. Guan, and Y. Li: Synthesis of titania-supported platinum catalyst: The effect of pH on morphology control and valence state during photodeposition. Langmuir 20 (21), 9329 (2004).

    Article  CAS  Google Scholar 

  59. X. Chen and C. Burda: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130 (15), 5018 (2008).

    Article  CAS  Google Scholar 

  60. P. Romero-Gómez, V. Rico, A. Borrás, A. Barranco, J.P. Espinós, J. Cotrino, and A.R. González-Elipe: Chemical state of nitrogen and visible surface and Schottky barrier driven photoactivities of N-doped TiO2 thin films. J. Phys. Chem. C 113 (30), 13341 (2009).

    Article  CAS  Google Scholar 

  61. A.A. Ismail and D.W. Bahnemann: Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. C 115 (13), 5784 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT13083) from Ministry of Education of The People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzong Zhang.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Su, D., Zhang, Y. et al. Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. Journal of Materials Research 32, 757–765 (2017). https://doi.org/10.1557/jmr.2016.462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.462

Navigation