Skip to main content
Log in

Structural and magnetic properties of Sb3+ ions doped Ni–Ba–Co ferrite prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, nanocrystalline Sb3+ ions doped Ni0.2Ba0.1Co0.7Fe2−xSbxO4 (0 ≤ x ≤ 0.1, step by 0.025) ferrites were prepared via sol–gel method. The spinel-phase structure of samples can be confirmed by X-ray diffraction (XRD) patterns. The composition and structure were further studied by Fourier transform infrared spectroscopy (FTIR). There were two typical characteristic bands ν1 and ν2 in FTIR spectra, which related to the stretching vibrations in spinel ferrite. Energy-dispersive spectrometer (EDS) analyzed the elements of samples. It indicated that the elements of Ni, Ba, Co, Fe, O, and Sb existed in the samples. Vibrating sample magnetometer was used to characterize magnetic properties. The saturation magnetization decreased from 57.65 to 44.50 emu/g with the increasing Sb3+ ions content, which is attributed to Fe3+ ions replaced by the Sb3+ ions. Remanent magnetization and coercivity first decreased and then increased slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Liu, X. Kan, X. Liu, Z. Zhang, J. Hu, Magnetic compensation and critical behavior in spinel Co2TiO4. Phys. Chem. Chem. Phys. 22, 20929 (2020)

    Article  CAS  Google Scholar 

  2. W. Yang, X. Kan, X. Liu, Z. Wang, Z. Chen, Z. Wang, R. Zhu, M. Shezad, Spin glass behavior in Zn0.8−xNixCu0.2Fe2O4 (0≤x≤0.28) ferrites. Ceram. Int. 45, 23328–23332 (2019)

    Article  CAS  Google Scholar 

  3. Y. Li, X. Kan, X. Liu, S. Feng, Q. Lv, K.M.U. Rehma, W. Wang, C. Liu, X. Wang, Y. Xu, Spin-glass evolution behavior in spinel compounds Co2−xZnxSnO4 (0≤x≤1). J. Alloy Compd 852, 156962 (2021)

    Article  CAS  Google Scholar 

  4. T. Alves, R. Augustine, P. Quéffélec, M. Grzeskowiak, B. Poussot, J.-M. Laheurte, Polymeric ferrite-loaded antennas for on-body communications. Microw. Opt. Technol. Lett. 51, 11 (2009)

    Article  Google Scholar 

  5. A. Baykal, N. Kasapoğlu, Y. Köseoğlu, A.C. Başaran, H. Kavas, M.S. Toprak, Microwave-induced combustion synthesis and characterization of NixCo1−xFe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). Cent. Eur. J. Chem. 6, 125–130 (2008)

    CAS  Google Scholar 

  6. Q. Chang, H. Liang, B. Shi, X. Li, Y. Zhang, L. Zhang, H. Wu, Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.jcis.2020.12.099

    Article  Google Scholar 

  7. J. Wei, X. Zhang, Q. Liu, Z. Li, L. Liu, J. Wang, Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem. Eng. J. 241, 228–234 (2014)

    Article  CAS  Google Scholar 

  8. K.K. Senapati, C. Borgohain, P. Phukan, Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J. Mol. Catal. A 339, 24–31 (2011)

    Article  CAS  Google Scholar 

  9. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017)

    Article  CAS  Google Scholar 

  10. X. Zhu, J. Zhou, M. Chen, M. Shi, W. Feng, F. Li, Core–shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33, 4618–4627 (2012)

    Article  CAS  Google Scholar 

  11. A. Meidanchi, O. Akhavan, S. Khoei, A.A. Shokri, Z. Hajikarimi, N. Khansari, ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater. Sci. Eng. C 46, 394–399 (2015)

    Article  CAS  Google Scholar 

  12. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  CAS  Google Scholar 

  13. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Guner, M. Sertkol, S.E. Shirsath, A. Baykal, Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.02.022

    Article  Google Scholar 

  14. M. Sangmanee, S. Maensiri, Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl. Phys. A 97, 167–177 (2009)

    Article  CAS  Google Scholar 

  15. T. Dippong, E.A. Levei, I.G. Deac, E. Neag, O. Cadar, Influence of Cu2+, Ni2+, and Zn2+ Ions doping on the structure, morphology, and magnetic properties of Co-ferrite embedded in SiO2 matrix obtained by an innovative sol–gel route. Nanomaterials 10, 580 (2020)

    Article  CAS  Google Scholar 

  16. V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  CAS  Google Scholar 

  17. M. Stoia, P. Barvinschi, L.B. Tudoran, M. Barbu, M. Stefanescu, Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors. J. Therm. Anal. Calorim. 108, 1033–1039 (2012)

    Article  CAS  Google Scholar 

  18. K.H. Wu, W.C. Huang, G.P. Wang, T.R. Wu, Effect of pH on the magnetic and dielectric properties of SiO2/NiZn ferrite nanocomposites. Mater. Res. Bull. 40, 1822–1831 (2005)

    Article  CAS  Google Scholar 

  19. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Mater. Sci. Eng. B 175, 14–21 (2010)

    Article  CAS  Google Scholar 

  20. K. Maaz, S. Karim, K.J. Lee, M.-H. Jung, G.-H. Kim, Effect of temperature on the magnetic characteristics of Ni0.5Co0.5Fe2O4 nanoparticles. Mater. Chem. Phys. 133, 1006–1010 (2012)

    Article  CAS  Google Scholar 

  21. E. Ranjith Kumar, R. Jayaprakash, Effect of combustion rate and annealing temperature on structural and magnetic properties of manganese substituted nickel and zinc ferrites. J. Magn. Magn. Mater. 348, 93–100 (2013)

    Article  Google Scholar 

  22. A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256, 174–182 (2003)

    Article  CAS  Google Scholar 

  23. C.H. Chia, S. Zakaria, M. Yusoff, S.C. Goh, C.Y. Haw, Sh. Ahmadi, N.M. Huang, H.N. Lim, Size and crystallinity-dependent magnetic properties of CoFe2O4 nanocrystals. Ceram. Int. 36, 605–609 (2010)

    Article  CAS  Google Scholar 

  24. W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe2O4 (M= Mg, Ba Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9, 2545–2552 (1999)

    Article  CAS  Google Scholar 

  25. U.V. Chhaya, B.S. Trivedi, R.G. Kulkarni, Magnetic ordering and properties of nickel ferrite doped with Al3+ and Cr3+ ions. J. Mater. Sci. Lett. 18, 1177–1179 (1999)

    Article  CAS  Google Scholar 

  26. M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, I.H. Gul, Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2−xO4) nanoparticles by reverse micelle technique. J. Alloy Compd 509, 5119–5126 (2011)

    Article  CAS  Google Scholar 

  27. S. Anjum, T. Ilayas, Z. Mustafa, Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite. Appl. Phys. A 126, 227 (2020)

    Article  CAS  Google Scholar 

  28. S. Anjum, A. Shabab, S. Rafifique, R. Zia, S. Riaz, S. Hameed, M. Riaz, Crystal growth of antimony substituted cobalt ferrites thin films deposited by electron beam. Optik 127, 8487–8498 (2016)

    Article  CAS  Google Scholar 

  29. Ch.S. Lakshmi, Ch.S.L.N. Sridhar, G. Govindraj, S. Bangarraju, D.M. Potukuchi, Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel–zinc ferrites. Physica B 459, 97–104 (2015)

    Article  CAS  Google Scholar 

  30. J.S. Ghodake, R.C. Kambale, T.J. Shinde, P.K. Maskar, S.S. Suryavanshi, Magnetic and microwave absorbing properties of Co2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater. 40, 938–942 (2016)

    Article  Google Scholar 

  31. L.-Z. Li, Z. Yu, Z.-W. Lan, K. Sun, C.-J. Wu, Structural and magnetic properties of Mg-substituted NiZnCo ferrite nanopowders. Ceram. Int. 40(9), 13917–13921 (2014)

    Article  CAS  Google Scholar 

  32. M.A. Tena, S. Sorlí, M. Llusar, J.A. Badenes, A. Forés, G. Monrós, Study of Sb-doped SnO2 Gray ceramic pigment with cassiterite structure. Z. Anorg. Allg. Chem. 631, 2188–2191 (2005)

    Article  CAS  Google Scholar 

  33. C.C. Naik, A.V. Salker, Effect of fractional substitution of Sb3+ ions on structural, magnetic and electrical properties of cobalt ferrite. Mater. Sci. Eng. B. 258, 114574 (2020)

    Article  CAS  Google Scholar 

  34. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1−xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  CAS  Google Scholar 

  35. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  36. W. Zhang, A. Sun, X. Zhao, X. Pan, Y. Han, N. Suo, L. Yu, Z. Zuo, Structural and magnetic properties of Ni–Cu–Co ferrites prepared from sol–gel auto combustion method with different complexing agents. J. Alloy Compd 816, 152501 (2020)

    Article  CAS  Google Scholar 

  37. K.H. Wu, T.H. Ting, C.C. Yang, G.P. Wang, Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni–Zn ferrite. Mater. Sci. Eng. B 123, 227–233 (2005)

    Article  Google Scholar 

  38. M.P. Ghosh, P. Kumar, M. Kar, S. Mukherjee, Impact of In3+ ion substitution on microstructural, magnetic and dielectric responses of nickel–cobalt spinel ferrite nanocrystals. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04330-6

    Article  Google Scholar 

  39. K. Kumar, A. Loganathan, Structural, electrical and magnetic properties of large ionic size Sr2+ ions substituted Mg-ferrite nanoparticles. Mater. Chem. Phys. 214, 229–238 (2018)

    Article  CAS  Google Scholar 

  40. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16, 2347 (2014)

    Article  CAS  Google Scholar 

  41. N. Suo, A. Sun, L. Yu, Z. Zuo, X. Zhao, W. Zhang, Y. Zhang, L. Shao, T. Yu, Preparation and study of lattice structure and magnetic properties of Bi3+ ion-doped Ni–Mg–Co ferrites by sol–gel auto-combustion method. J. Sol–Gel Sci. Technol. (2020). https://doi.org/10.1007/s10971-020-05302-2

    Article  Google Scholar 

  42. I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  CAS  Google Scholar 

  43. N. Dipesh, L. Wang, H. Adhikari, J. Alam, S.R. Mishra, Influence of Al3+ doping on structural and magnetic properties of CoFe2−xAlxO4 ferrite nanoparticles. J. Alloy Compd (2016). https://doi.org/10.1016/j.jallcom.2016.07.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YZ: contributed to experiment, conceptualization, investigation, writing-original draft and visualization; AS: checked the manuscript; LS: checked the table and ZS: helped in measurement of data, experimental process, checking the figure.

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, A., Shao, L. et al. Structural and magnetic properties of Sb3+ ions doped Ni–Ba–Co ferrite prepared by sol–gel method. J Mater Sci: Mater Electron 32, 11300–11311 (2021). https://doi.org/10.1007/s10854-021-05799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05799-5

Navigation