Skip to main content
Log in

Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge in developing continuous ones. Herein, large-scale aramid nanofibers (ANFs)-derived carbon membrane was developed for the first time. Influence of pyrolysis temperature on chemical constitution and crystalline structure during carbonization process was investigated. The results showed that the decomposition stage of ANFs freestanding membrane begun at ~ 474 °C, while the reconstruction stage begun at ~ 600 °C. Besides, the rupture of amide bonds occurred around 500 °C, which was validated by disappearance of C=O groups. Moreover, the declining integrated intensities ID/IG, and the sharp rising electrical conductivity of demonstrated progressive aromatization and ring condensation. In addition, the microgrooves with an average diameter of ~ 40 nm were formed during the carbonization. Subsequently, the ANFs-derived carbon membrane exhibited superior conductivity (123.8 S cm−1) and electromagnetic shielding effectiveness value of 16 dB (X band) with thickness of 28 μm. This work provided feasible strategy in fabricating carbon-based membrane for advanced electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang, R. Yuand, J. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624–1807624 (2019)

    Article  CAS  Google Scholar 

  2. H.-B. Zhao, Z.-B. Fu, H.-B. Chen, M.-L. Zhong, C.-Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8(2), 1468–1477 (2016)

    Article  CAS  Google Scholar 

  3. Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu, W. Zhang, T. Zhou, Z. Zhang, X. Zhang, H.-M. Cheng, W. Ren, Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020)

    Article  CAS  Google Scholar 

  4. J. Kittur, B. Desai, R. Chaudhari, P.K. Loharkar, A comparative study of EMI shielding effectiveness of metals, metal coatings and carbon-based materials. IOP Conf. Ser. 810(1), 012019 (2020)

    Article  CAS  Google Scholar 

  5. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114(39), 16229–16235 (2010)

    Article  CAS  Google Scholar 

  6. M. Cao, Y. Cai, P. He, J. Shu, W. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359(1), 1265–1302 (2019)

    Article  CAS  Google Scholar 

  7. C. Chen, Z. Zhu, X. Li, J. Li, Electropolymerization and energy storage of poly[Ni(salphen)]/MWCNT composite materials for supercapacitors. J. Appl. Polym. Sci. 134(7), 44464–44472 (2017)

    Article  CAS  Google Scholar 

  8. J. Jinand, A.A. Ogale, Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends. J. Appl. Polym. Sci. 135(8), 45903–45912 (2018)

    Article  CAS  Google Scholar 

  9. H.I. Cho, Y.C. Jeong, J.H. Kim, Y.S. Cho, T. Kim, S.J. Yang, C.R. Park, Rational design of 1D partially graphitized N-doped hierarchical porous carbon with uniaxially packed carbon nanotubes for high-performance lithium-ion batteries. ACS Nano 12(11), 11106–11119 (2018)

    Article  CAS  Google Scholar 

  10. S. Naeem, V. Baheti, J. Militky, V. Tunakova, S. Gilani, S. Javed, P. Behera, Impact of carbonization temperature on activated carbon web for EMI shielding and Ohmic heating. Vlakna Text. 25(4), 57–62 (2018)

    CAS  Google Scholar 

  11. T.A. Khan, A.S. Saud, S.S. Jamari, M.H.A. Rahim, J.-W. Park, H.-J. Kim, Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenergy 130(2), 105384 (2019)

    Article  CAS  Google Scholar 

  12. L. Wang, X. Hu, Recent advances in porous carbon materials for electrochemical energy storage. Chem. Asian J. 13(12), 1518–1529 (2018)

    Article  CAS  Google Scholar 

  13. N.M. Ahmed, F.A. Sabah, E.A. Kabaa, M.T. Zar Myint, Single- and double-thread activated carbon fibers for pH sensing. Mater. Chem. Phys. 221(1), 288–294 (2019)

    Article  CAS  Google Scholar 

  14. N.K. Han, J.H. Ryu, D.U. Park, J.H. Choi, Y.G. Jeong, Fabrication and electrochemical characterization of polyimide-derived carbon nanofibers for self-standing supercapacitor electrode materials. J. Appl. Polym. Sci. 136(32), 47846 (2019)

    Article  CAS  Google Scholar 

  15. J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan, X. Wei, G. Zhang, Z. Ma, X. He, Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158(3), 45–54 (2020)

    Article  CAS  Google Scholar 

  16. L. Zhuo, C. Ma, F. Xie, S. Chen, Z. Lu, Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance. Cellulose 27(7), 7677–7689 (2020)

    Article  CAS  Google Scholar 

  17. Z. Qian, Z. Wang, N. Zhao, J. Xu, Aerogels derived from polymer nanofibers and their applications. Macromol. Rapid Commun. 39(14), 1700724 (2018)

    Article  CAS  Google Scholar 

  18. L. Zhang, M. Kowalik, Z. Gao, C.M. Ashraf, S. Rajabpour, C. Bumgardner, Y. Schwab, B. Damirchi, J. Zhu, D. Akbarian, Converting PBO fibers into carbon fibers by ultrafast carbonization. Carbon 159(15), 432–442 (2020)

    Article  CAS  Google Scholar 

  19. S. Villar-Rodil, F. Suárez-García, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Activated carbon materials of uniform porosity from polyaramid fibers. Chem. Mater. 17(24), 5893–5908 (2005)

    Article  CAS  Google Scholar 

  20. Y.P. Khanna, E.M. Pearce, J.S. Smith, D.T. Burkitt, H. Njuguna, D.M. Hindenlang, B.D. Forman, Aromatic polyamides. II. Thermal degradation of some aromatic polyamides and their model diamides. J. Polym. Sci. Polym. Phys. Ed. 19(11), 2817–2834 (1981)

    Article  CAS  Google Scholar 

  21. M. Panar, P. Avakian, R.C. Blume, K.H. Gardner, T.D. Gierke, H.H. Yang, Morphology of poly(p-phenylene terephthalamide) fibers. J. Polym. Sci. Polym. Phys. Ed. 21(10), 1955–1969 (1983)

    Article  CAS  Google Scholar 

  22. S. Naeem, V. Baheti, V. Tunakova, J. Militky, D. Karthik, B. Tomkova, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications. Carbon 111(1), 439–447 (2017)

    Article  CAS  Google Scholar 

  23. M.E.G. Mosquera, M. Jamond, A. Martinez-Alonso, J.M.D. Tascon, Thermal transformations of Kevlar aramid fibers during pyrolysis: infrared and thermal analysis studies. Chem. Mater. 6(11), 1918–1924 (1994)

    Article  CAS  Google Scholar 

  24. F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang, Q. Ma, Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019)

    Article  CAS  Google Scholar 

  25. I. Tomizuka, Y. Isoda, Y. Amamiya, Carbon fibre from a high-modulus polyamide fibre (Kevlar). Carbon 15(106), 93–101 (1981)

    Google Scholar 

  26. M.B. Vázquez-Santos, E. Geissler, K. Laszlo, J.-N. Rouzaud, A. Martínez-Alonso, J.M. Tascón, Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J. Phys. Chem. C 116(1), 257–268 (2012)

    Article  CAS  Google Scholar 

  27. J.M.D. Tascon, Nanoporous carbon fibres by pyrolysis of nomex polyaramid fibres. J. Therm. Anal. Calorim. 79(3), 529–532 (2005)

    Article  CAS  Google Scholar 

  28. A. Martínez-Alonso, M. Jamond, M.A. Montes-Morán, J.M.D. Tascón, Microporous texture of activated carbon fibers prepared from aramid fiber pulp. Microporous Mater. 11(5), 303–311 (1997)

    Article  Google Scholar 

  29. K.S. Ko, C.W. Park, S.-H. Yoon, S.M. Oh, Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 39(11), 1619–1625 (2001)

    Article  CAS  Google Scholar 

  30. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001)

    Article  CAS  Google Scholar 

  31. J.R. Brown, A.J. Power, Thermal degradation of aramids: part I-pyrolysis/gas chromatography/mass spectrometry of poly(1,3-phenylene isophthalamide) and poly(1,4-phenylene terephthalamide). Polym. Degrad. Stab. 4(5), 379–392 (1982)

    Article  CAS  Google Scholar 

  32. B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, X. Ding, Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30(22), 2000186 (2020)

    Article  CAS  Google Scholar 

  33. Y. Ming, C. Keqin, S. Lang, Q. Ying, Z. Jian, W. Anthony, E.M. Arruda, K. John, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011)

    Article  CAS  Google Scholar 

  34. B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019)

    Article  CAS  Google Scholar 

  35. Z. Lu, L. Si, W. Dang, Y. Zhao, Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos. A 115(9), 321–330 (2018)

    Article  CAS  Google Scholar 

  36. J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013)

    Article  CAS  Google Scholar 

  37. A. Cuesta, A. Martinez-Alonso, J.M.D. Tascon, R.H. Bradley, Chemical transformations resulting from pyrolysis and CO2 activation of Kevlar flocks. Carbon 35(7), 967–976 (1997)

    Article  CAS  Google Scholar 

  38. F. Suárezgarcía, A. Martínezalonso, J.M.D. Tascón, Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temp Time Effects Microporous Mesoporous Mater. 75(1), 73–80 (2004)

    Article  CAS  Google Scholar 

  39. B. Yang, M. Zhang, Z. Lu, J. Tan, J. Luo, S. Song, X. Ding, L. Wang, P. Lu, Q. Zhang, Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF). Carbohydr. Polym. 208(9), 372–381 (2019)

    Article  CAS  Google Scholar 

  40. Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, X. Feng, Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10(1), 1–9 (2019)

    CAS  Google Scholar 

  41. J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang, X. Zhang, Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13(2), 2236–2245 (2019)

    Google Scholar 

  42. Z.Y. Xu, J.Y. Li, Enhanced swelling, mechanical and thermal properties of cellulose nanofibrils (CNF)/poly(vinyl alcohol) (PVA) hydrogels with controlled porous structure. J. Nanosci. Nanotechnol. 18(1), 668–675 (2018)

    Article  CAS  Google Scholar 

  43. A.R. Alian, S.A. Meguid, Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites. Phys. Chem. Chem. Phys. 19(6), 4426–4434 (2017)

    Article  CAS  Google Scholar 

  44. J. Liu, Z. Chen, Z. Zeng, D.P. Kanungo, F. Bu, Y. Bai, C. Qi, W. Qian, Influence of polyurethane polymer on the strength and mechanical behavior of sand-root composite. Fibers Polym. 21(4), 829–839 (2020)

    Article  CAS  Google Scholar 

  45. A. Castro-Muñiz, A. Martínez-Alonso, J.M.D. Tascón, Modification of the pyrolysis/carbonization of PPTA polymer by intermediate isothermal treatments. Carbon 46(7), 985–993 (2008)

    Article  CAS  Google Scholar 

  46. K. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23(16), 2072–2080 (2013)

    Article  CAS  Google Scholar 

  47. S. Villar-Rodil, A. MartÍNez-Alonso, J.M.D. Tascón, Studies on pyrolysis of nomex polyaramid fibers. J. Anal. Appl. Pyrolysis 58(3), 105–115 (2001)

    Article  Google Scholar 

  48. H.R. Schulten, B. Plage, H. Ohtani, S. Tsuge, Studies on the thermal degradation of aromatic polyamides by pyrolysis-field ionization mass spectrometry and pyrolysis-gas chromatography. Angew. Makromol. Chem. 155(1), 1–20 (1987)

    Article  CAS  Google Scholar 

  49. A. Jain, K. Vijayan, Kevlar 49 fibres: thermal expansion coefficients from high temperature X-ray data. Curr. Sci. 78(3), 5–9 (2000)

    Google Scholar 

  50. R. Davies, M. Burghammer, Thermal- and stress-induced lattice distortions in a single Kevlar49 fibre studied by microfocus X-ray diffraction. J. Mater. Sci. 44(1), 4806–4813 (2009)

    Article  CAS  Google Scholar 

  51. A.M. Hindeleh, S.M. Abdo, Effects of annealing on the crystallinity and microparacrystallite size of Kevlar 49 fibres. Polymer 30(2), 218–224 (1989)

    Article  CAS  Google Scholar 

  52. E. Jiang, M. Maghe, N. Zohdi, N. Amiralian, M. Naebe, B. Laycock, B.L. Fox, D.J. Martin, P.K. Annamalai, Influence of different nanocellulose additives on processing and performance of PAN-based carbon fibers. ACS Omega 4(6), 9720–9730 (2019)

    Article  CAS  Google Scholar 

  53. F. Tanaka, T. Okabe, Historical review of processing, microstructures, and mechanical properties of PAN-based carbon fibers. Compr. Compos. Mater. II 1(8), 66–85 (2018)

    CAS  Google Scholar 

  54. Y. Tang, D. Li, D. Ao, S. Li, X. Zu, Ultralight, highly flexible and conductive carbon foams for high performance electromagnetic shielding application. J. Mater. Sci. 29(16), 13643–13652 (2018)

    CAS  Google Scholar 

  55. F. Tunistra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126–1130 (1970)

    Article  Google Scholar 

  56. R. Gu, J. Yu, C. Hu, L. Chen, J. Zhu, Z. Hu, Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure. Appl. Surf. Sci. 258(24), 10168–10174 (2012)

    Article  CAS  Google Scholar 

  57. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)

    Article  CAS  Google Scholar 

  58. D. Cheng, P. Wu, J. Wang, X. Tang, T. An, H. Zhou, D. Zhang, T. Fan, Synergetic pore structure optimization and nitrogen doping of 3D porous graphene for high performance lithium sulfur battery. Carbon 143(1), 869–877 (2019)

    Article  CAS  Google Scholar 

  59. X. Fang, X. Yu, H. Zheng, H. Jin, L. Wang, M. Cao, Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379(37), 2245–2251 (2015)

    Article  CAS  Google Scholar 

  60. S. Zhang, Q. Ran, Q. Fu, Y. Gu, Carbonized polybenzoxazine for electromagnetic interference shielding. Mater. Chem. Phys. 236(10), 121806 (2019)

    Article  CAS  Google Scholar 

  61. Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139(6), 271–278 (2018)

    Article  CAS  Google Scholar 

  62. S. Farhan, R.-M. Wang, K.-Z. Li, Physical and electromagnetic shielding properties of green carbon foam prepared from biomaterials. Trans. Nonferrous Met. Soc. China 28(1), 103–113 (2018)

    Article  CAS  Google Scholar 

  63. Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, W. Lu, Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142(2), 20–31 (2019)

    Article  CAS  Google Scholar 

  64. X. Zhou, Z. Jia, A. Feng, X. Wang, G. Wu, Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152(11), 827–836 (2019)

    Article  CAS  Google Scholar 

  65. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010)

    Article  CAS  Google Scholar 

  66. R. Kumar, H.K. Choudhary, A.V. Anupama, A.V. Menon, S.P. Pawar, S. Bose, B. Sahoo, Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures. New J. Chem. 43(14), 5568–5580 (2019)

    Article  CAS  Google Scholar 

  67. P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368(7), 285–298 (2019)

    Article  CAS  Google Scholar 

  68. G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, T.U. Patro, Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 17(31), 20347–20360 (2015)

    Article  CAS  Google Scholar 

  69. J.D. Sudha, S. Sivakala, R. Prasanth, V.L. Reena, P.R. Nair, Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite. Compos. Sci. Technol. 69(3), 358–364 (2010)

    Google Scholar 

  70. N. Agnihotri, K. Chakrabartiand, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765–43771 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciates for the financial support from the National Natural Science Foundation of China (Grant No. 51803110), the National Key Research and Development Plan (Grant No. 2017YBF0308302), Shaanxi Natural Science Basic Research Program (Grant No. 2019JQ-010, 2020JQ-724), the Opening Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry (Grant No. KFKT2019-10), and Zhejiang Province Key Research and Development Project (Grant No. 2019C04008). Finally, the authors thank the inimitable support of QW in the toughest times. IOP Conference Series: Materials Science and Engineering, 810(5), 12019 (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqing Lu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 293 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Jia, F., Zhuo, L. et al. Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application. J Mater Sci: Mater Electron 32, 7090–7105 (2021). https://doi.org/10.1007/s10854-021-05418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05418-3

Navigation