Skip to main content

Advertisement

Log in

Mechanical, dielectric, ferroelectric and piezoelectric properties of 0–3 connectivity lead-free piezoelectric ceramic 0.94Bi0.5Na0.5TiO3–0.06BaTiO3/Portland cement composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, lead-free piezoelectric ceramic 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (BNT–BT)/Portland cement (PC) composites have been fabricated for use as sensor in structural health monitoring applications. BNT–BT ceramic particles were mixed with Portland cement using ceramic particles content of 30–60 vol.% to form 0–3 connectivity pattern BNT–BT/PC composite. The acoustic impedance, compressive strength, dielectric, ferroelectric and piezoelectric properties of the composites were investigated as a function of ceramic content. The results indicated that the BNT–BT ceramic content of ≈ 40–60 vol.% are the optimal BNT–BT ceramic contents for acoustic impedance matching between composite and concrete structure. The compressive strength was found in the region of 28.19–35.30 MPa for BNT–BT/PC composites is close to that of normal concrete. The dielectric constant (εr) value of composites increased as BNT–BT ceramic content increased, while the dielectric loss value reduced with higher BNT–BT ceramic content. The BNT–BT ceramic content in these composites has a beneficial effect on the ferroelectric behavior. Moreover, composite with BNT–BT ceramic content of 60 vol.% exhibited the highest piezoelectric coefficient (\({d}_{33}\)) value of 42 pC/N. The piezoelectric voltage coefficient (\({g}_{33}\)) of BNT–BT/PC composites was found to be in the range of 13.96 mV m/N to 17.00 mV m/N. Furthermore, the εr and \({d}_{33}\) values of composites were close to the cubes model. According to the results, it is noted that these composites have good compatibility with concrete structure and has the potential for use as sensor in structural health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Li, D. Zhang, K. Wu, J. Am. Ceram. Soc. 85, 305 (2002)

    Article  CAS  Google Scholar 

  2. C. Xin, S.F. Huang, J. Chang, J. Appl. Phys. 101, 094110 (2007)

    Article  Google Scholar 

  3. A. Chaipanich, N. Jaitanong, T. Tunkasiri, Mater. Lett. 61, 5206 (2007)

    Article  CAS  Google Scholar 

  4. F. Wang, H. Wang, Y. Song, H. Sun, Mater. Lett. 76, 208 (2012)

    Article  Google Scholar 

  5. A. Prado, L. Ramajo, J. Camargo, A. del Campo, P. Öchsner, F. Rubio-Marcos, M. Castro, J. Mater. Sci. Mater. Electron. 30, 18405 (2019)

    Article  CAS  Google Scholar 

  6. E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)

    Article  CAS  Google Scholar 

  7. R. Rianyoi, R. Potong, N. Jaitanong, R. Yimnirun, A. Chaipanich, Appl. Phys. A 104, 661 (2011)

    Article  CAS  Google Scholar 

  8. R. Potong, R. Rianyoi, A. Chaipanich, Ferroelectr. Lett. 38, 18 (2011)

    Article  CAS  Google Scholar 

  9. R. Potong, R. Rianyoi, A. Ngamjarurojana, A. Chaipanich, Ferroelectr. Lett. 39, 15 (2012)

    Article  CAS  Google Scholar 

  10. R. Rianyoi, R. Potong, A. Ngamjarurojana, A. Chaipanich, Ceram. Int. 39, S47 (2013)

    Article  CAS  Google Scholar 

  11. R. Potong, R. Rianyoi, A. Ngamjarurojana, R. Yimnirun, R. Guo, A.S. Bhalla, A. Chaipanich, Ferroelectrics 455, 69 (2013)

    Article  CAS  Google Scholar 

  12. R. Rianyoi, R. Potong, A. Ngamjarurojana, A. Chaipanich, Ferroelectr. Lett. 43(1–3), 59 (2016)

    Article  CAS  Google Scholar 

  13. S. Hunpratub, T. Yamwong, S. Srilomsak, S. Maensiri, P. Chindaprasirt, Ceram. Int. 40(1), 1209 (2014)

    Article  CAS  Google Scholar 

  14. R. Potong, R. Rianyoi, A. Ngamjarurojana, R. Yimnirun, R. Guo, A.S. Bhalla, A. Chaipanich, Ceram. Int. 40(1), S129 (2017)

    Article  Google Scholar 

  15. P. Chomyen, R. Potong, R. Rianyoi, A. Ngamjarurojana, P. Chindaprasirt, A. Chaipanich, Ceram. Int. 44, 76 (2018)

    Article  CAS  Google Scholar 

  16. A. Safari, J. Phys. III Fr. 4, 1129 (1994)

    Google Scholar 

  17. M.H. Lee, A. Halliyal, R.E. Newnham, Ferroelectrics 87, 71 (1988)

    Article  Google Scholar 

  18. S. Ashok Kunar, M. Santhanam, in Proceedings of National Seminar on Non-destructive Evaluation, Hyderabad, 7–9 December 2006. https://www.ndt.net/article/nde-india2006/files/tp-57-pap.pdf. Accessed 20 May 2019

  19. M.K. McInerney, S.W. Morefield, V.F. Hock, in Proceedings of the Army Science Conference (26th), Orlando, Florida, 1–4 December 2008. https://apps.dtic.mil/dtic/tr/fulltext/u2/a503519.pdf. Accessed 1 March 2016

  20. J. Suchanicz, K. Roleder, A. Kania, J. Handerek, Ferroelectrics 77, 107 (1988)

    Article  CAS  Google Scholar 

  21. A. Thanaboonsombut, N. Vaneesorn, J. Electroceram. 21, 414 (2008)

    Article  CAS  Google Scholar 

  22. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80(11), 2954 (1997)

    Article  CAS  Google Scholar 

  23. X. Zhag, Y. Liu, Z. Yu, Y. Lyu, C. Lyu, J. Mater. Sci. Mater. Electron. 28, 14664 (2017)

    Article  Google Scholar 

  24. C. Li, L. Yang, J. Xu, C. Yuan, C. Zhou, H. Wang, J. Mater. Sci. Mater. Electron. 30, 21398 (2019)

    Article  CAS  Google Scholar 

  25. P. Yusong, S. Qianqian, C. Yan, Ceramics Silikáty 58(1), 50 (2014)

    Google Scholar 

  26. Y. Gong, X. He, C. Chen, Z. Yi, J. Alloys Compd. 818, 152822 (2019)

    Article  Google Scholar 

  27. N. Jaitanong, R. Rianyoi, R. Potong, R. Yimnirun, A. Chaipanich, Integr. Ferroelectr. 107(1), 43 (2009)

    Article  CAS  Google Scholar 

  28. R. Rianyoi, R. Potong, R. Yimnirun, A. Chaipanich, Integr. Ferroelectr. 150, 147 (2014)

    Article  CAS  Google Scholar 

  29. S.T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91(1), 3950 (2008)

    Article  CAS  Google Scholar 

  30. A. Chaipanich, R. Rianyoi, R. Potong, N. Jaitanong, P. Chindaprasirt, Ferroelectrics 457, 53 (2013)

    Article  CAS  Google Scholar 

  31. K. Janković, D. Nikolić, D. Bojović, L. Lončar, Z. Romakov, Archit. Civ. Eng. 9(3), 419 (2011)

    Google Scholar 

  32. Y.I. Ibrahim, A.I. Seedahamed, A.M. Mashair, Int. J. Eng. Sci. Technol. 6(12), 295 (2017)

    CAS  Google Scholar 

  33. R.E. Newnham, Annu. Rev. Mater. Sci. 16, 47 (1986)

    Article  CAS  Google Scholar 

  34. D.H. Yoon, J. Zhang, B.I. Lee, Mater. Res. Bull. 38, 765 (2003)

    Article  CAS  Google Scholar 

  35. R.I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, W.H. Abd, Ceram. Int. 41(10), 13836 (2015)

    Article  CAS  Google Scholar 

  36. R.E. Newnham, L.J. Bowen, K.A. Klicker, L.E. Cross, Mater. Des. 2, 93 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Thailand Research Fund (TRF) and the Office of the Higher Education Commission (OHEC) to Dr. Rattiyakorn Rianyoi (MRG6180225) is gratefully acknowledged. The authors also wish to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University. The authors are grateful to the members of staff at the Electroceramics Research Laboratory for the research facilities made possible for this research work. The authors would like to thank Mr. Wattikon Sroila for his advice on the compressive strength testing. This research work was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rianyoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rianyoi, R., Potong, R., Ngamjarurojana, A. et al. Mechanical, dielectric, ferroelectric and piezoelectric properties of 0–3 connectivity lead-free piezoelectric ceramic 0.94Bi0.5Na0.5TiO3–0.06BaTiO3/Portland cement composites. J Mater Sci: Mater Electron 32, 4695–4704 (2021). https://doi.org/10.1007/s10854-020-05207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05207-4

Navigation