Skip to main content
Log in

Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramic composites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramic composites were fabricated using 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 (BNBT), Portland cement, and polyvinylidene fluoride (PVDF). The microstructure, acoustic impedance (Z c), dielectric properties, and influence of poling temperature and electrical poling field on the piezoelectric coefficient (d 33) and the total period of the poling process of composites with 50 vol% BNBT and 1–10 vol% PVDF were investigated. The results indicated that Z c, the dielectric constant, and the dielectric loss of the composites decrease as the PVDF content increases. The d 33 of the composites was found to enhance more clearly when the content of PVDF is more than 2 vol%. The d 33 results of the composites showed an optimum increase of 45% when 5 vol% PVDF was used (under an electrical poling field of 1.5 kV/mm and a poling temperature of 80°C). Moreover, these composites with PVDF were found to exhibit enhanced poling behavior in that the PVDF was able to reduce the total period of the poling process. Interestingly, the piezoelectric voltage coefficient (g 33) of the composite with 5 vol% PVDF content had the highest value of 33.59 mV·m/N. Therefore, it can be safely concluded that this new kind of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramic composite has the potential to be used in concrete as a sensor for structural health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Li Z, Zhang D, Wu K (2002) Cement-based 0–3 piezoelectric composite. J Am Ceram Soc 85:305–313

    Article  Google Scholar 

  2. Shifeng H, Jun C, Futian L, Lingchao L, Zhengmao Y, Xin C (2004) Poling process and piezoelectric properties of lead zirconate titanate/sulphoaluminate cement composites. J Mater Sci 39:6975–6979. doi:10.1023/B:JMSC.0000047540.71855.3a

    Article  Google Scholar 

  3. Huang S, Chang J, Lu L, Liu F, Ye Z, Cheng X (2006) Preparation and polarization of 0–3 cement based piezoelectric composites. Mater Res Bull 41:291–297

    Article  Google Scholar 

  4. Xin C, Shifeng H, Jun C, Zongjin L (2007) Piezoelectric, dielectric, and ferroelectric properties of 0–3 ceramic/cement composites. J Appl Phys 101(9):094110

    Article  Google Scholar 

  5. Chaipanich A (2007) Dielectric and piezoelectric properties of PZT–cement composites. Curr Appl Phys 7:537–539

    Article  Google Scholar 

  6. Chaipanich A, Jaitanong N, Tunkasiri T (2007) Fabrication and properties of PZT–ordinary Portland cement composites. Mater Lett 61:5206–5208

    Article  Google Scholar 

  7. Jaitanong N, Chaipanich A (2008) Effect of poling temperature on piezoelectric properties of 0–3 PZT-Portland cement composites. Ferr Lett 35:17–23

    Article  Google Scholar 

  8. Gonga H, Li Z, Zhang Y, Fan R (2009) Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black. J Eur Ceram Soc 29:2013–2019

    Article  Google Scholar 

  9. Wang F, Wang H, Song Y, Sun H (2012) High piezoelectricity 0–3 cement-based piezoelectric composites. Mater Lett 76:208–210

    Article  Google Scholar 

  10. Pan HH, Lin DH, Yeh RH (2016) High piezoelectric and dielectric properties of 0–3 PZT/cement composites by temperature treatment. Cem Concr Compos 72:1–8

    Article  Google Scholar 

  11. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700

    Article  Google Scholar 

  12. Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. doi:10.1007/s10853-009-3643-0

    Article  Google Scholar 

  13. Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Chaipanich A (2011) Dielectric, ferroelectric and piezoelectric properties of 0-3 barium titanate–Portland cement composites. Appl Phys A Mater Sci Process 104:661–666

    Article  Google Scholar 

  14. Potong R, Rianyoi R, Chaipanich A (2011) Dielectric properties of lead-free composites from 0–3 barium zirconate titanate-Portland cement composites. Ferr Lett 38:18–23

    Article  Google Scholar 

  15. Potong R, Rianyoi R, Ngamjarurojana A, Chaipanich A (2012) Ferroelectric hysteresis properties of 0–3 lead-free barium zirconate-Portland cement composites. Ferr Lett 39:15–19

    Article  Google Scholar 

  16. Rianyoi R, Potong R, Ngamjarurojana A, Chaipanich A (2013) Influence of barium titanate content and particle size on electromechanical coupling coefficient of lead-free piezoelectric ceramic–Portland cement composites. Ceram Int 39:S47–S51

    Article  Google Scholar 

  17. Potong R, Rianyoi R, Ngamjarurojana A, Yimnirun R, Guo R, Bhalla AS, Chaipanich A (2013) Acoustic and piezoelectric properties of 0–3 barium zirconate titanate-Portland cement composites-effects of BZT content and particle size. Ferroelectrics 455:69–76

    Article  Google Scholar 

  18. Rianyoi R, Potong R, Ngamjarurojana A, Chaipanich A (2016) Microstructure and electrical properties of 0–3 connectivity barium titanate–Portland cement composite with 40% barium titanate content. Ferr Lett 43(1–3):59–64

    Article  Google Scholar 

  19. Xu C, Lin D, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10:934–940

    Article  Google Scholar 

  20. Swain S, Kar SK, Kumar P (2015) Dielectric, optical, piezoelectric and ferroelectric studies of NBT–BT ceramics near MPB. Ceram Int 41:10710–10717

    Article  Google Scholar 

  21. Chu BJ, Chen DR, Li GR, Yin QR (2002) Electrical properties of Bi0.5Na0.5TiO3–BaTiO3 ceramics. J Eur Ceram Soc 22:2115–2121

    Article  Google Scholar 

  22. Balakt AM, Shaw CP, Qi Zhang (2017) Large pyroelectric properties at reduced depolarization temperature in A-site nonstoichiometry composition of lead-free 0.94NaxBiyTiO3–0.06BazTiO3 ceramics. J Mater Sci 52:7382–7393. doi:10.1007/s10853-017-0973-1

    Article  Google Scholar 

  23. Jaitanong N, Yimnirun R, Zeng HR, Li GR, Yin QR, Chaipanich A (2014) Piezoelectric properties of cement based/PVDF/PZT composites. Mater Lett 130:146–149

    Article  Google Scholar 

  24. Gregorio RJ, Cestari MJ (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys 32:859–870

    Article  Google Scholar 

  25. Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8:975–976

    Article  Google Scholar 

  26. Kepler RG (1978) Piezoelectricity, pyroelectricity and ferroelectricity in organic materials. Ann Rev Phys Chem 29:497–518

    Article  Google Scholar 

  27. Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70(6):1596–1608

    Article  Google Scholar 

  28. Chiolerio A, Lombardi M, Guerriero A et al (2013) Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J Mater Sci 48:6943–6951. doi:10.1007/s10853-013-7500-9

    Article  Google Scholar 

  29. Dias JC, Correia DC, Lopes AC et al (2016) Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. J Mater Sci 51:4442–4450. doi:10.1007/s10853-016-9756-3

    Article  Google Scholar 

  30. Wu CM, Chou MH (2016) Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos Sci Technol 127:127–133

    Article  Google Scholar 

  31. Silva AJJ, Nascimento CR, da Costa MF (2016) Thermomechanical properties and long-term behavior evaluation of poly(vinylidene fluoride) (PVDF) exposed to bioethanol fuel under heating. J Mater Sci 51:9074–9094. doi:10.1007/s10853-016-0159-2

    Article  Google Scholar 

  32. Ma B, Yang J, Sun Q, Jakpa W, Hou X, Yang Y (2017) Influence of cellulose/[Bmim]Cl solution on the properties of fabricated NIPS PVDF membranes. J Mater Sci. doi:10.1007/s10853-017-1150-2

    Google Scholar 

  33. Lang SB, Muensit S (2006) Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl Phys A 85:125–134

    Article  Google Scholar 

  34. Mishra P, Kumar P (2013) Dielectric properties of 0.25(BZT–BCT)–0.75[(1 − x)PVDF–xCCTO] (x = 0.02, 0.04, 0.06, 0.08 and 0.1) composites for embedded capacitor applications. Compos Sci Technol 88:26–32

    Article  Google Scholar 

  35. Tomer V, Randall CA, Polizos G, Kostelnick J, Manias E (2008) High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. J Appl Phys 103:034115

    Article  Google Scholar 

  36. Misirlioglu B, Kesim MT, Alpay SP (2014) Strong dependence of dielectric properties on electrical boundary conditions and interfaces in ferroelectric superlattices. J Appl Phys Lett 104:022906

    Article  Google Scholar 

  37. Mangeri J, Yomery E, Andrea J, Alpya SP, Nakhmanson S, Heinonen O (2017) Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616–1624

    Article  Google Scholar 

  38. Kumar A, Bhanu Prasad VV, James Raju KC, James AR (2015) Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. Eur Phys J B 88:287

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Thailand Research Fund (TRF) (Grant Number TRG 5880071) to Dr. Rattiyakorn Rianyoi is gratefully acknowledged. The authors are grateful to the staff at the Electroceramics Research Laboratory for the research facilities made possible for this research work. Partial funding provided by the Thailand Research Fund (TRF) (Grant Number IRG5780013) and Chiang Mai University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattiyakorn Rianyoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rianyoi, R., Potong, R., Ngamjarurojana, A. et al. Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramic composites. J Mater Sci 53, 345–355 (2018). https://doi.org/10.1007/s10853-017-1533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1533-4

Keywords

Navigation