Skip to main content
Log in

Correlation Between Microstructure and Optical Properties of Cu (In0.7, Ga0.3) Se2 Grown by Electrodeposition Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline thin films Cu (In0.7, Ga0.3) Se2 (CIGSe) were grown on copper foils at various cathodic potentials by using an electrodeposition technique. Scanning electron microscopy showed that the average diameter of CIGSe grains increase from 0.1 μm to 1 μm when the cathodic potential decreases. The structure and surface morphology were investigated by x-ray diffraction and atomic force microscopy (AFM) techniques. This structure study shows that the thin films were well crystallized in a chalcopyrite structure without unwanted secondary phases with a preferred orientation along (112) plane. Energy-dispersive x-ray analyses confirms the existence of CIGSe single phase on a copper substrate. AFM analysis indicated that the root mean square roughness decreases from 64.28 to 27.42 when the potential deposition increases from −0.95 V to −0.77 V. Using Raman scattering spectroscopy, the A1 optical phonon mode was observed in 173 cm−1 and two other weak peaks were detected at 214 cm−1 and 225 cm−1 associated with the B2 and E modes of the CIGSe phase. Through spectroscopy ellipsometry analysis, a three-layer optical model was exploited to derive the optical properties and layer thickness of the CIGSe film by least-squares fitting the measured variation in polarization light versus the obtained microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kang, J. Ao, G. Sun, Q. He, and Y. Sun, J. Alloys Compd. 478, L25 (2009).

    Article  Google Scholar 

  2. G. Hanna, A. Jasenek, U. Rau, and H.W. Schock, Thin Solid Films 387, 71 (2001).

    Article  Google Scholar 

  3. X. Zhu and C.W. Liu, Appl. Phys. Lett. 105, 143502 (2014).

    Article  Google Scholar 

  4. R.C. Valderrama, P.J. Sebastian, J.P. Enriquez, and S.A. Gamboa, Sol. Energy Mat. Sol. Cells 88, 145 (2005).

    Article  Google Scholar 

  5. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  6. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 28 (2015).

    Article  Google Scholar 

  7. M. Powalla, M. Cemernjak, J. Eberhardt, F. Kessler, R. Kniese, H.D. Mohring, and B. Dimmler, Sol. Energy Mater. Sol. Cells 90, 3158 (2006).

    Article  Google Scholar 

  8. K. Orgassa, H.W. Schock, and J.H. Werner, Thin Solid Films 431–432, 387 (2003).

    Article  Google Scholar 

  9. M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, D. Hariskos, R. Menner, A. Bauer, S. Spiering, E. Ahlswede, T.M. Friedlmeier, D. Blazquez-Sanchez, I. Klugius, and W. Wischmann, IEEE J. Photovolt. 4, 440 (2014).

    Article  Google Scholar 

  10. B.M. Başol, V.K. Kapur, C.R. Leidholm, A. Halani, and K. Gledhill, Sol. Energy Mat. Sol. Cells 43, 93 (1996).

    Article  Google Scholar 

  11. P. Chelvanathan, Z. Zakaria, Y. Yusoff, M. Akhtaruzzaman, M.M. Alam, M.A. Alghoul, K. Sopian, and N. Amin, Appl. Surf. Sci. 334, 129 (2015).

    Article  Google Scholar 

  12. T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, Thin Solid Films 387, 118 (2001).

    Article  Google Scholar 

  13. Y.C. Lin, M.T. Shen, Y.L. Chen, H.R. Hsu, and C.H. Wu, Thin Solid Films 570, 166 (2014).

    Article  Google Scholar 

  14. H. Mirhosseini, J. Kiss, G. Roma, and C. Felser, Thin Solid Films 606, 143 (2016).

    Article  Google Scholar 

  15. Y.H. Jo, B.C. Mohanty, and Y.S. Cho, Appl. Surf. Sci. 256, 6819 (2010).

    Article  Google Scholar 

  16. A. Kampmann, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyen, and K. Kalberlah, MRS Proc. 763, B8.5 (2003).

    Google Scholar 

  17. S. Sunkoju, S. Schujman, D. Dixit, A. Diebold, J. Li, R. Collins, and P. Haldar, Thin Solid Films 606, 113 (2016).

    Article  Google Scholar 

  18. J. Claypoole, B. Peace, N. Sun, D. Dwyer, M.D. Eisaman, P. Haldar, and H. Efstathiadis, J. Alloys Compd. 657, 873 (2016).

    Article  Google Scholar 

  19. S. Aksu, J. Wang, and B.M. Basol, Electrochem. Solid State Lett. 12, D33 (2009).

    Article  Google Scholar 

  20. C. Su, W. Ho, H. Lin, C. Nieh, and S.C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).

    Article  Google Scholar 

  21. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, and Y. Liu, Electrochim. Acta 54, 3004 (2009).

    Article  Google Scholar 

  22. H.K. Song, J.K. Jeonga, H.J. Kim, S.K. Kim, and K.H. Yoon, Thin Solid Films 435, 186 (2003).

    Article  Google Scholar 

  23. J. Gao, W. Jie, Y. Yuan, T. Wang, G. Zha, and J. Tong, J. Vac. Sci. Technol. A 29, 051507 (2011).

    Article  Google Scholar 

  24. L. Fanni, B.A. Aebersold, D.T.L. Alexander, L. Ding, M.M. Masis, S. Nicolay, and C. Ballif, Thin Solid Films 565, 1 (2014).

    Article  Google Scholar 

  25. P.K. Mishra, J.N. Prasad, V. Dave, R. Chandra, and A.K. Choudhary, Mater. Sci. Semicond. Process. 34, 350 (2015).

    Article  Google Scholar 

  26. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).

    Google Scholar 

  27. V. Awasthi, S.K. Pandey, S.K. Pandey, S. Verma, M. Gupta, and S. Mukherjee, J. Mater. Sci. Mater. Electron. 25, 3069 (2014).

    Article  Google Scholar 

  28. J. Olejníček, C.A. Kamler, A. Mirasano, A.L. Martinez-Skinner, M.A. Ingersoll, C.L. Exstrom, S.A. Darveau, J.L. Huguenin-Love, M. Diaz, N.J. Ianno, and R.J. Soukup, Sol. Energy Mater. Sol. Cells 94, 8 (2010).

    Article  Google Scholar 

  29. S. Roy, P. Guha, S.N. Kundu, H. Hanzawa, S. Chaudhuri, and A.K. Pal, Mater. Chem. Phys. 73, 24 (2002).

    Article  Google Scholar 

  30. K. Kondo, H. Sano, and K. Sato, Thin Solid Films 326, 83 (1998).

    Article  Google Scholar 

  31. T. Jia, L. Dong, Z. Zhao, X. Li, and D. Li, Surf. Coat. Tech. 259, 94 (2014).

    Article  Google Scholar 

  32. P. Klapetek, D. NeČas, and C. Anderson, Gwyddion Software User Guide, Version 2.45 (Czech Metrology Institute, 2009), http://www.cmi.cz, http://gwyddion.net/.

  33. A.M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M.E. Calixto, P.J. Sebastian, C.H. Marshall, and T.J. Gillespie, Thin Solid Films 361–362, 74 (2000).

    Article  Google Scholar 

  34. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (Amsterdam: North Holland, 1977).

    Google Scholar 

  35. D.A.G. Bridgeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  36. G.E. Jellison and F.A. Modine, Appl. Phys. Lett. 69, 371 (1996).

    Article  Google Scholar 

  37. C. Talagrand, X. Boddaert, D.G. Selmeczi, C. Defranoux, and P. Collot, Thin Solid Films 590, 134 (2015).

    Article  Google Scholar 

  38. M.I. Alonso, M. Garriga, C.A.D. Rincon, and M. Leon, J. Appl. Phys. 88, 5796 (2000).

    Article  Google Scholar 

  39. P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, J. Appl. Phys. 94, 879 (2003).

    Article  Google Scholar 

  40. S. Theodoropoulou, D. Papadimitriou, K. Anestou, Ch. Cobet, and N. Esser, Semicond. Sci. Technol. 24, 015014 (2009).

    Article  Google Scholar 

  41. J.H. Lee, X. Ke, N.J. Podraza, L.F. Kourkoutis, T. Heeg, M. Roeckerath, J.W. Freeland, C.J. Fennice, J. Schubert, D.A. Muller, P. Schiffer, and D.G. Schlom, Appl. Phys. Lett. 94, 212510 (2009).

    Article  Google Scholar 

  42. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press, 1979), p. 210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Chihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, A., Bessais, B. Correlation Between Microstructure and Optical Properties of Cu (In0.7, Ga0.3) Se2 Grown by Electrodeposition Technique. J. Electron. Mater. 46, 354–362 (2017). https://doi.org/10.1007/s11664-016-4881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4881-y

Keywords

Navigation