Skip to main content
Log in

Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium-ion batteries are being explored as an alternative to the Li-ion batteries, due to the abundance of Na and similar electrochemistry with that of Li. In this study, we report the electrochemical activity of octahedron-like antimony trioxide nanostructures for Na-ion batteries, prepared with the simple hydrothermal oxidation of antimony precursor in alkaline condition. The microstructure reveals the formation of octahedron-like microcrystals with cubic antimony trioxide phase. In Na-ion cells, the antimony trioxide electrode exhibits a reversible specific capacity of 623 mAh g−1 on the first charge and long cycle stability of 200 cycles losing only 9% capacity. The exceptional electrochemical performance achieved by antimony trioxide is owing to the conversion and alloying reactions mechanism, which accelerates the kinetics of the reactions by stabilizing the structure of anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 46, 3529 (2017). https://doi.org/10.1039/C6CS00776G

    Article  CAS  Google Scholar 

  2. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Energy Environ. Sci. 5, 5884 (2012). https://doi.org/10.1039/C2EE02781J

    Article  CAS  Google Scholar 

  3. V.L. Chevrier, G. Ceder, J. Electrochem. Soc. 158, A1011 (2011). https://doi.org/10.1149/1.3607983

    Article  CAS  Google Scholar 

  4. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2, 710 (2012). https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  5. M.M. Doeff, Y. Ma, S.J. Visco, L.C. De Jonghe, J. Electrochem. Soc. 140, L169 (1993). https://doi.org/10.1149/1.2221153

    Article  CAS  Google Scholar 

  6. B. Xiao, T. Rojo, X. Li, ChemSusChem 12, 133 (2019). https://doi.org/10.1002/cssc.201801879

    Article  CAS  Google Scholar 

  7. W. Xiao, Q. Sun, J. Liu et al., Nano Energy 66, 104177 (2019). https://doi.org/10.1016/j.nanoen.2019.104177

    Article  CAS  Google Scholar 

  8. X. Ma, S. Liu, K. Zhang et al., J. Mater. Sci. Mater. Electron. 29, 3492 (2018). https://doi.org/10.1007/s10854-017-8283-6

    Article  CAS  Google Scholar 

  9. P. Wang, X. Lu, Y. Boyjoo et al., J. Power Sources 451, 227756 (2020). https://doi.org/10.1016/j.jpowsour.2020.227756

    Article  CAS  Google Scholar 

  10. Y. Lu, L. Yu, X.W. Lou, Chem 4, 972 (2018). https://doi.org/10.1016/j.chempr.2018.01.003

    Article  CAS  Google Scholar 

  11. S. Ni, P. Huang, D. Chao et al., Adv. Funct. Mater. 27, 1701808 (2017). https://doi.org/10.1002/adfm.201701808

    Article  CAS  Google Scholar 

  12. S. Ni, Q. Chen, J. Liu et al., J. Power Sources 433, 126681 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.087

    Article  CAS  Google Scholar 

  13. J. He, Y. Wei, T. Zhai, H. Li, Mater. Chem. Front. 2, 437 (2018). https://doi.org/10.1039/C7QM00480J

    Article  CAS  Google Scholar 

  14. C. Nithya, S. Gopukumar, J. Mater. Chem. A 2, 10516 (2014). https://doi.org/10.1039/C4TA01324G

    Article  CAS  Google Scholar 

  15. L. Wu, X. Hu, J. Qian et al., Energy Environ. Sci. 7, 323 (2014). https://doi.org/10.1039/C3EE42944J

    Article  CAS  Google Scholar 

  16. X. Zhou, X. Liu, Y. Xu, Y. Liu, Z. Dai, J. Bao, J. Phys. Chem. C 118, 23527 (2014). https://doi.org/10.1021/jp507116t

    Article  CAS  Google Scholar 

  17. Y. Zhu, X. Han, Y. Xu et al., ACS Nano 7, 6378 (2013). https://doi.org/10.1021/nn4025674

    Article  CAS  Google Scholar 

  18. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 134, 20805 (2012). https://doi.org/10.1021/ja310347x

    Article  CAS  Google Scholar 

  19. B. Farbod, K. Cui, W.P. Kalisvaart et al., ACS Nano 8, 4415 (2014). https://doi.org/10.1021/nn4063598

    Article  CAS  Google Scholar 

  20. D.-H. Nam, K.-S. Hong, S.-J. Lim, H.-S. Kwon, J. Power Sources 247, 423 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.095

    Article  CAS  Google Scholar 

  21. A. Darwiche, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Electrochem. Commun. 32, 18 (2013). https://doi.org/10.1016/j.elecom.2013.03.029

    Article  CAS  Google Scholar 

  22. N. Li, S. Liao, Y. Sun, H.W. Song, C.X. Wang, J. Mater. Chem. A 3, 5820 (2015). https://doi.org/10.1039/C4TA06825D

    Article  CAS  Google Scholar 

  23. W. Li, K. Wang, S. Cheng, K. Jiang, J. Mater. Chem. A 5, 1160 (2017). https://doi.org/10.1039/C6TA09265A

    Article  CAS  Google Scholar 

  24. M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin, M. Yan, ACS Appl. Mater. Interfaces 6, 19449 (2014). https://doi.org/10.1021/am505505m

    Article  CAS  Google Scholar 

  25. K. Li, H. Liu, G. Wang, Arab. J. Sci. Eng. 39, 6589 (2014). https://doi.org/10.1007/s13369-014-1194-4

    Article  CAS  Google Scholar 

  26. S. Liu, Z. Cai, J. Zhou, M. Zhu, A. Pan, S. Liang, J. Mater. Chem. A 5, 9169 (2017). https://doi.org/10.1039/C7TA01895A

    Article  CAS  Google Scholar 

  27. K.-S. Hong, D.-H. Nam, S.-J. Lim, D. Sohn, T.-H. Kim, H. Kwon, ACS Appl. Mater. Interfaces 7, 17264 (2015). https://doi.org/10.1021/acsami.5b04225

    Article  CAS  Google Scholar 

  28. D. Wang, Y. Zhou, C. Song, M. Shao, J. Cryst. Growth 311, 3948 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.020

    Article  CAS  Google Scholar 

  29. X. Han, M. Jin, S. Xie et al., Angew. Chem. 121, 9344 (2009). https://doi.org/10.1002/ange.200903926

    Article  Google Scholar 

  30. Z. Sui, S. Hu, H. Chen et al., J. Mater. Chem. C 5, 5451 (2017). https://doi.org/10.1039/C7TC01289F

    Article  CAS  Google Scholar 

  31. D.H. Nam, K.S. Hong, S.J. Lim, M.J. Kim, H.S. Kwon, Small 11, 2885 (2015). https://doi.org/10.1002/smll.201500491

    Article  CAS  Google Scholar 

  32. S. Ni, X. Lv, J. Ma, X. Yang, L. Zhang, J. Power Sources 270, 564 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.137

    Article  CAS  Google Scholar 

  33. S. Ni, B. Zheng, J. Liu et al., J. Mater. Chem. A 6, 18821 (2018). https://doi.org/10.1039/C8TA04959A

    Article  CAS  Google Scholar 

  34. D. Li, D. Yan, J. Ma et al., Ceram. Int. 42, 15634 (2016). https://doi.org/10.1016/j.ceramint.2016.07.017

    Article  CAS  Google Scholar 

  35. X. Guo, X. Xie, S. Choi et al., J. Mater. Chem. A 5, 12445 (2017). https://doi.org/10.1039/C7TA02689G

    Article  CAS  Google Scholar 

  36. Z. Yi, Q. Han, X. Li, Y. Wu, Y. Cheng, L. Wang, Chem. Eng. J. 315, 101 (2017). https://doi.org/10.1016/j.cej.2017.01.020

    Article  CAS  Google Scholar 

  37. K. Ramakrishnan, C. Nithya, B. KundolyPurushothaman, N. Kumar, S. Gopukumar, ACS Sustain. Chem. Eng. 5, 5090 (2017). https://doi.org/10.1021/acssuschemeng.7b00469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RSK would like to thank the University Grants Commission, New Delhi, for the awarding of the D.S. Kothari Post-Doctoral Fellowship (F.4-2/2006 (BSR)/PH/14-15/0132).

Funding

University Grants Commission, New Delhi (F.4-2/2006 (BSR)/PH/14-15/0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramchandra S. Kalubarme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2020_5125_MOESM1_ESM.docx

Supplementary Information: XRD, SEM, TEM, and electrochemical performance of the rod-shaped Sb2O3, Schematic representation of coin type half-cell. (DOCX 27752 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalubarme, R.S., Park, CJ., Kale, B.B. et al. Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries. J Mater Sci: Mater Electron 32, 3809–3818 (2021). https://doi.org/10.1007/s10854-020-05125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05125-5

Navigation