Skip to main content

Advertisement

Log in

Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sodium ion batteries (SIBs) are possible low-cost alternative to the current lithium ion batteries and hold great perspectives for large-scale renewable energy storage. However, the unavailability of appropriate anode material hinders the practical application of SIBs. Herein, we have examined the structural and electrochemical properties of perovskite Na0.5Bi0.5TiO3 (NBTO) and explored the possibilities of utilizing it as an anode component for Na ion batteries. The electrochemical measurement shows that the perovskite NBTO exhibits high sodium storage capability via alloying/de-alloying reaction, fast sodium storage kinetics, and a good cyclability. The perovskite Na0.5Bi0.5TiO3 delivers a high capacity of ~ 470 mAh g−1 at 100 mA g−1 and 230 mAh g−1 at 250 mA g−1, emerging as a new anode for SIBs. Furthermore, the perovskite Na0.5Bi0.5TiO3 can retain a capacity of ~ 215 mAh g−1 after 50 cycles at 100 mA g−1, which is comparable to several previous metal oxide anodes. In addition, the sodium storage behavior is investigated by ex situ XRD and XPS techniques. The high capacity and good rate capability suggest that the perovskite Na0.5Bi0.5TiO3 has great potential to serve as anodes for high-performing SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li X, Kehui Q, Yuyan G, Xia H, Fangdong Z (2015) High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Mater Sci 50:2914–2920. https://doi.org/10.1007/s10853-015-8856-9

    Article  Google Scholar 

  2. Johnston-Peck AC, Takeuchi S, Bharathi KK, Herzing AA, Bendersky LA (2018) Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films. J Mater Sci 53:1365–1379. https://doi.org/10.1007/s10853-017-1593-5

    Article  Google Scholar 

  3. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  5. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  Google Scholar 

  6. Vetter J, Novak P, Wagner MR, Veit C, Moller KC, Besenhard JO, Winter M, Mehrens MW, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281

    Article  Google Scholar 

  7. Friege H, Reutter L, Gnutzmann N, Klöffer A, Mohrlok M, Sauce ADL, Wons W, Kross S (2016) An examination of batteries remaining in used electric and electronic devices: insights gained from a trans disciplinary project. Recycling 1:321–327

    Article  Google Scholar 

  8. Kim SM, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  Google Scholar 

  9. Kim D, Kang SH, Slater M, Rood S, Vaughey JT, Karan N, Balasubramanian M, Johnson CS (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336

    Article  Google Scholar 

  10. Ko YN, Choi SH, Kang YC (2016) Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl Mater Interfaces 8:6449–6456

    Article  Google Scholar 

  11. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew Chem Int Ed 53:10169–10173

    Article  Google Scholar 

  12. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  13. Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  Google Scholar 

  14. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  Google Scholar 

  15. Tian H, Xin F, Wang X, He W, Han W (2015) High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J Materiomics 1(3):153–169

    Article  Google Scholar 

  16. Yu L, Wang LP, Xi S, Yang P, Du Y, Srinivasan M, Xu ZJ (2015) β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem Mater 27(15):5340–5348

    Article  Google Scholar 

  17. Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M (2014) Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5:60–66

    Article  Google Scholar 

  18. Sun Q, Ren QQ, Li H, Fu ZW (2011) High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem Commun 13:1462–1464

    Article  Google Scholar 

  19. Hu Z, Wang LX, Zhang K, Wang JB, Cheng FY, Tao ZL, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed 53:12794–12798

    Article  Google Scholar 

  20. Shimizu M, Usui H, Sakaguchi H (2014) Electrochemical Na insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition. J Power Sources 248:378–382

    Article  Google Scholar 

  21. Xu J, Wang M, Wickramaratne NP, Jaronie M, Dou S, Dai L (2015) High-performance sodium ion batteries based on three-dimensional anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048

    Article  Google Scholar 

  22. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88

    Article  Google Scholar 

  23. Pol VG, Lee E, Zhou D, Dogan F, Calderon-Moreno JM, Johnson CS (2014) Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim Acta 127:61

    Article  Google Scholar 

  24. Veerappana G, Yoo S, Zhang K, Ma M, Kang B, Park JH (2016) High-reversible capacity of perovskite BaSnO3/rGO composite for lithium-ion battery anodes. Electrochim Acta 214:31–37

    Article  Google Scholar 

  25. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2008) Studies on nano-CaO·SnO2 and nano-CaSnO3 as anodes for Li-ion batteries. Chem Mater 20(21):6829–6839

    Article  Google Scholar 

  26. Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Cryst B 58:168–178

    Article  Google Scholar 

  27. Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem Mater 20:5061–5073

    Article  Google Scholar 

  28. Ranjan R, Dviwedi A (2005) Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3:0 ≤ x ≤ 0.10. Solid State Commun 135:394–399

    Article  Google Scholar 

  29. Ge W, Luo C, Zhang Q, Ren Y, Li J, Luo H, Viehland D (2014) Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3. Appl Phys Lett 105:1629131-5

    Google Scholar 

  30. Kaswan K, Agarwal A, Sanghi S, Singh O (2015) Rietveld refinement and dielectric properties of (Na0.5Bi0.5TiO3)–(Bi0.8Ba0.2FeO3) ceramics. In: AIP conference proceedings, vol 1665, p 140014

  31. Lignesh D, Brindha M, Thomas CI, Kim DK, Bharathi KK (2017) Electrochemical properties of BiFeO3 nanoparticles: anode material for sodium-ion battery application. Mater Sci Semicond Process 68:165–171

    Article  Google Scholar 

  32. Suchanicz J, Sumara IJ, Kruzina TV (2011) Raman and infrared spectroscopy of Na0.5Bi0.5TiO3–BaTiO3 ceramics. J Electroceram 27:45–50

    Article  Google Scholar 

  33. Saïd S, Marchet P, Merle-Méjean T, Mercurio JP (2004) Raman spectroscopy study of the Na0.5Bi0.5TiO3–PbTiO3 system. Mater Lett 58:1405–1409

    Article  Google Scholar 

  34. Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK (2014) High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta 146:503–510

    Article  Google Scholar 

  35. Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2(986):1–8

    Google Scholar 

  36. Song R, Song H, Zhou J, Chen X, Wua B, Yang HY (2012) Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J Mater Chem 22:12369

    Article  Google Scholar 

  37. Yang S, Song H, Chen X, Okotrub AV, Bulusheva LG (2007) Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim Acta 52:5286–5293

    Article  Google Scholar 

  38. Ruffo R, Fathi R, Kim DJ, Jung YH, Mari CM, Kim DK (2013) Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta 108:575–582

    Article  Google Scholar 

  39. Li M, Zhang LL, Yang XL, Sun HB, Huang YH, Liang G, Nia CB, Tao HC (2015) Synthesis and electrochemical performance of Na modified Li2Fe0.5Mn0.5SiO4 cathode material for Li ion batteries. RSC Adv 5:22818–22824

    Article  Google Scholar 

  40. Bhunia H, Bar A, Bera A, Pal AJ (2017) Simultaneous observation of surface- and edge-states of a 2D topological insulator through scanning tunneling spectroscopy and differential conductance imaging. Phys Chem Chem Phys 19:9872–9878

    Article  Google Scholar 

  41. Perejon A, Jimenez PS, Maqueda LP, Criado JM, Paz JRD, Puche RS, Maso N, West AR (2014) Single phase, electrically insulating, multiferroic La-substituted BiFeO3 prepared by mechanosynthesis. J Mater Chem C 2:8398–8411

    Article  Google Scholar 

  42. Wu M, Feng Q, Sun X, Wang H, Gielen G, Wu W (2015) Rice (Oryza sativa L.) plantation affects the stability of biochar in paddy soil. Sci Rep 5:10001

    Article  Google Scholar 

  43. Stadnichenko AI, Koshcheev SV, Boronin AI (2007) Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Mosc Univ Chem Bull 62(6):343–349

    Article  Google Scholar 

  44. Sun T, Zhang Z, Xiao J, Chen C, Xiao F, Wang S, Liu Y (2013) Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci Rep 3:2527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kamala Bharathi or Do Kyung Kim.

Ethics declarations

Conflict of interest

As a corresponding author, on behalf of all the authors I am declaring that the article is original. The article has been written by the stated authors who are all aware of its content and approve its submission. The article has not been published previously. The article is not under consideration for publication elsewhere. No conflict of interest exists. If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, K.K., Moorthy, B., Dara, H.K. et al. Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries. J Mater Sci 54, 13236–13246 (2019). https://doi.org/10.1007/s10853-019-03834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03834-9

Navigation