Skip to main content

Advertisement

Log in

Photo-renewable electrode based on porous carbon-loaded La-TiO2 for detection of catechol and hydroquinone

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fouling and passivation of the electrodes tend to reduce the sensitivity and lifetime of the electrodes. In this work, the mesoporous carbon-doped La-TiO2 modified electrode not only has a good detection signal for catechol and hydroquinone, but also can achieve the purpose of electrode regeneration under illumination. A series of porous carbon materials LTOF-T (La-Ti Organic Frameworks-Temperature, LTOF-T) were prepared by hydrothermal method and pyrolysis method using La(NO3)3⋅6H2O, p-tricarboxylic acid, citric acid monohydrate, and tetra-n-butyl titanate as raw materials. The materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and Raman spectroscopy. The electrochemical behaviors of catechol (CA) and hydroquinone (HQ) on different electrodes were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimal conditions, HQ and CA concentrations were linear in the range of 0.4–20 μmol/L, and the detection limits were 0.039 μmol/L (HQ) and 0.034 μmol/L (CA) at the signal noise ratio of 3. The electrode can be regenerated under visible light irradiation within 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.L. Zhong, Y.C. Kuo, C.J. Chang, Y.S. Lin, C.C. Hu, RSC Adv. 8, 19381–19388 (2018)

    Article  Google Scholar 

  2. T.Y. Xie, Q.W. Liu, Y.R. Shi, Q.Y. Liu, J. Anal. Sci. 1109, 317–321 (2006)

    CAS  Google Scholar 

  3. H.F. Li, C.G. Xie, J.J. Zong, H.K. Zhou, Metellurgical Anal. 29, 31–35 (2009)

    Google Scholar 

  4. W.H. Gao, C.L. Quigley, J. Chormatogr. A. 1218, 4307–4311 (2011)

    Article  CAS  Google Scholar 

  5. Z.C. Wang, Y.H. Tang, H. Hua, L.L. Xing, G.B. Zhang, R.X. Gao, J. Lumin. Sci. 145, 818–823 (2014)

    Article  CAS  Google Scholar 

  6. P. Nagaraja, R.A. Vasantha, K.R. Sunitha, Talanta 55, 1039–1046 (2001)

    Article  CAS  Google Scholar 

  7. H.M. Jiang, S.Q. Wang, W.F. Deng, Y.M. Zhang, Y.M. Tan, Q.J. Xie, M. Ma, Talanta 164, 300–306 (2017)

    Article  CAS  Google Scholar 

  8. L. Zhen, Y.H. Yue, Y.J. Hao, S. Feng, X.L. Zhou, Microchem. Acta 185, 215–223 (2018)

    Article  Google Scholar 

  9. H.J. Wang, S.Y. Zhang, S.F. Li, J.Y. Qu, Anal. Methods 10, 1331–1338 (2018)

    Article  CAS  Google Scholar 

  10. W. Huang, T. Zhang, X.Y. Hu, Y. Wang, J.M. Wang, Microchim. Acta 185, 37–43 (2018)

    Article  Google Scholar 

  11. M. Nazari, S. Kashanian, P. Moradipour, N. Maleki, J. Electroanal. Chem. 812, 122–131 (2018)

    Article  CAS  Google Scholar 

  12. H.L. Wang, Q.Q. Hu, Y. Meng, Z.E. Jin, Z.L. Fang, Q.R. Fu, W.H. Gao, L. Xu, Y. Song, F.S. Lu, J. Hazard. Mater. 353, 151–157 (2018)

    Article  CAS  Google Scholar 

  13. X.C. Yang, X. Qiang, Cryst. Growth Des. 17, 1450–1455 (2017)

    Article  CAS  Google Scholar 

  14. Z.H. Rada, H.R. Abid, H.Q. Sun, J. Shang, J.Y. Li, Y.D. He, S.M. Liu, S.B. Wang, Prog. Nat. Sci. Mater. Int. 28, 160–167 (2018)

    Article  CAS  Google Scholar 

  15. I. Luz, F.X.L. Xamena, A. Corma, J. Catal. 276, 134–140 (2010)

    Article  CAS  Google Scholar 

  16. K. Zheng, Z.Q. Liu, Y. Huang, F. Chen, C.H. Zeng, S. Zhong, S.W. Ng, Sens. Actuators B 257, 705–713 (2018)

    Article  CAS  Google Scholar 

  17. M. Zhang, A.M. Zhang, X.X. Wang, Q. Huang, X.S. Zhu, X.L. Wang, L.Z. Dong, S.L. Li, Y.Q. Lan, J. Mater. Chem. A 6, 8735–8741 (2018)

    Article  CAS  Google Scholar 

  18. L. Yi, X. Jiao, S.C. Liu, Microporous Mesoporous Mater. 236, 94–99 (2016)

    Article  Google Scholar 

  19. T. Zeng, M.D. Yu, H.Y. Zhang, Z.Q. He, J.M. Chen, S. Song, Catal. Sci. Technol. 7, 396–404 (2017)

    Article  CAS  Google Scholar 

  20. G.Q. Zou, H.S. Hou, X.Y. Cao, P. Ge, G.G. Zhao, D.L. Yin, X.B. Ji, J. Mater. Chem. A 5, 23550–23558 (2017)

    Article  CAS  Google Scholar 

  21. Z.Q. Li, C.X. Li, X.L. Ge, J.Y. Ma, Z.W. Zhang, Q. Li, C.X. Wang, L.W. Yin, Nano Energy 23, 15–26 (2016)

    Article  CAS  Google Scholar 

  22. L.B. Shi, X. Cai, H. Li, H.Y. He, H.L. Zhao, M.B. Lan, Electroanalysis 30, 466–473 (2018)

    Article  CAS  Google Scholar 

  23. H. Chen, X.X. Wu, C.F. Lao, Y.C. Li, Q.H. Yuan, W. Gan, J. Electroanal. Chem. 835, 254–261 (2019)

    Article  CAS  Google Scholar 

  24. J.Y. Xu, J.F. Xia, F.F. Zhang, Z.H. Wang, Electrochim. Acta 251, 71–80 (2017)

    Article  CAS  Google Scholar 

  25. X.L. Zhu, Y.Y. Chen, C. Feng, W. Wang, B. Bo, R.X. Ren, G.X. Li, Anal. Chem. 89, 4131–4138 (2017)

    Article  CAS  Google Scholar 

  26. Y. Lei, F. Yang, Y.T. Li, L. Tang, K. Chen, G.J. Zhang, Microchim. Acta 184, 2299–2305 (2017)

    Article  CAS  Google Scholar 

  27. Q. Xu, Z.G. Guo, M. Zhang, Z.G. Hu, Y.H. Qian, D. Zhao, CrystEngComm 18, 4046–4052 (2016)

    Article  CAS  Google Scholar 

  28. T. Wan, F. Feng, Y.C. Wang, J. Univ. Sci. Technol. B 13, 372–379 (2006)

    Article  CAS  Google Scholar 

  29. A.B. Siddique, A.K. Pramanick, S. Chatterjee, M. Ray, Sci. Rep. 8, 9770–9779 (2018)

    Article  Google Scholar 

  30. K.L. Wang, Y.H. Cao, Z.R. Gu, P. Ahrenkiel, J. Lee, Q. Fan, RSC Adv. 6, 26738–26744 (2016)

    Article  CAS  Google Scholar 

  31. H.G. Yang, H.C. Zeng, J. Am. Chem. Soc. 127, 270–278 (2005)

    Article  CAS  Google Scholar 

  32. Y.N. Li, Z.M. Liu, Y.R. Li, Y.C. Wu, J.T. Chen, Y.J. Liu, P. Na, Nano 13, 1850051 (2018)

    Article  CAS  Google Scholar 

  33. Slamet, Setiadi, D. Tristantini, E. Kusrini, D. Philo, Int. J. Ind. Chem. 9, 127–139 (2018)

  34. Q.Y. Liang, H. Su, J. Yan, C. Leung, S.L. Cao, D.S. Yuan, Chin. J. Catal. 35, 1078–1083 (2014)

    Article  CAS  Google Scholar 

  35. D. Nematollahi, H.S. Jama, M. Alimoradib, S. Niroomand, Electrochim. Acta 54, 7407–7415 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21561011) and the Scientific Research Program Funded by Hubei Education Department, China (No. D20191903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Zheng or Xinjian Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 492 KB)

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lu, Y., Huang, L. et al. Photo-renewable electrode based on porous carbon-loaded La-TiO2 for detection of catechol and hydroquinone. J Mater Sci: Mater Electron 32, 1941–1950 (2021). https://doi.org/10.1007/s10854-020-04962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04962-8

Navigation