Skip to main content
Log in

Colossal dielectric response in erbium iron garnet ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline Er3Fe5O12 ceramic sample was synthesized by a solid-state reaction technique. The dielectric properties of the sample were experimentally studied. A colossal dielectric constant more than 103 was observed over a wide temperature and frequency range. The dielectric relaxation in the sample was identified by the measurement of permittivity modulus, impedance spectroscopy, and conductivity in detail. At relatively low temperatures (T < 600 K), the dielectric relaxation under high frequencies (f ≥ 50 kHz) is triggered by the dipolar effect accompanied by the Fe2+ and Fe3+ charge transitions, while that under low frequencies (f ≤ 50 kHz) is mainly be associated with the Maxwell–Wagner effect. Moreover, a low-frequency dielectric relaxation at high temperatures (T ≥ 600 K) is probably evolving from the contribution of oxygen vacancies and grain boundaries, which is also suggested to be the origin of the colossal dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Chen, Z. Zhang, Z. Xiong, B. Tang, Y. Yuan, S. Zhang, Microwave dielectric properties of (1-x) Ba3.75Nd9.5Cr0.25Nb0.25Ti17.5O54-xNdAlO3 ceramics. J. Am. Ceram. Soc. 100, 4058–4065 (2017).

  2. H. Chen, B. Tang, A. Gao, S. Duan, H. Yang, Y. Li, H. Li, S. Zhang, Aluminum substitution for titanium in Ba3.75Nd9.5Ti18O54 microwave dielectric ceramics. J. Mater. Sci.: Mater. Electron. 26, 405–410 (2015)

    Google Scholar 

  3. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  4. M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)

    Article  CAS  Google Scholar 

  5. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Func. Mater. 29, 1808118 (2019)

    Article  Google Scholar 

  6. C. Homes, T. Vogt, S. Shapiro, S. Wakimoto, A. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  CAS  Google Scholar 

  7. R. Pandey, W.A. Stapleton, J. Tate, A. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013)

    Article  Google Scholar 

  8. A. Kimel, A. Kirilyuk, A. Tsvetkov, R. Pisarev, T. Rasing, Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850 (2004)

    Article  CAS  Google Scholar 

  9. Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)

    Article  CAS  Google Scholar 

  10. R. Zuo, T. Granzow, D.C. Lupascu, J. Rödel, PMN–PT ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 90, 1101–1106 (2007)

    Article  CAS  Google Scholar 

  11. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321–1323 (2002)

    Article  CAS  Google Scholar 

  12. M. Subramanian, D. Li, N. Duan, B. Reisner, A. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  13. C. Li, T. Yan, G. Barasa, Y. Li, R. Zhang, S. Huang, S. Yuan, Colossal dielectric response in Ba1.5Sr1.5Co2Fe24O41 ceramics at high-temperature. J. Mater. Sci.: Mater. Electron. 29, 9971–9978 (2018)

    CAS  Google Scholar 

  14. X.H. Chen, Q.S. Fu, C.L. Li, Y.H. Li, C. Chakrabarti, Y. Qiu, S.L. Yuan, Colossal dielectric response and relaxation properties caused by Mg doping in Co2Y-Type hexaferrites. Ceram. Int. 46(2), 1551–9 (2020)

    Article  CAS  Google Scholar 

  15. Q. Fu, X. Chen, C. Chakrabarti, C. Li, J. Zheng, Y. Li, Y. Qiu, B. Meng, S. Yuan, The effect of Sr doping on structural and dielectric properties of Ba2Co2Fe12O22 ceramics. J. Mater. Sci.: Mater. Electron. 30(24), 21079–21088 (2019)

    CAS  Google Scholar 

  16. P. Lunkenheimer, S. Krohns, S. Riegg, S. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Special Top. 180, 61–89 (2009)

    Article  Google Scholar 

  17. S. Huang, K. Su, H. Wang, S. Yuan, D. Huo, High temperature dielectric response in R3Fe5O12 (R= Eu, Gd) ceramics. Mater. Chem. Phys. 197, 11–16 (2017)

    Article  CAS  Google Scholar 

  18. S. Huang, L. Shi, H. Sun, C. Li, L. Chen, S. Yuan, High temperature dielectric response in Sm3Fe5O12 ceramics. J. Alloy. Compd. 674, 341–346 (2016)

    Article  CAS  Google Scholar 

  19. Y. Wu, Y. Gao, X. Chen, Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Appl. Phys. Lett. 91, 092912 (2007)

    Article  Google Scholar 

  20. A. Maignan, K. Singh, C. Simon, O.I. Lebedev, C. Martin, H. Tan, J. Verbeeck, G.V. Tendeloo, Magnetic and magnetodielectric properties of erbium iron garnet ceramic. J. Appl. Phys. 113, 033905 (2013)

    Article  Google Scholar 

  21. H. Wu, R. Ti, Y. Xu, Y. Shan, Dielectric property of Y2.7La0.3Fe5O12 ceramics. Physica B 530, 15–18 (2018)

    Article  CAS  Google Scholar 

  22. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136 (2005)

    Article  CAS  Google Scholar 

  23. X. Wu, X. Wang, Y. Liu, W. Cai, S. Peng, F. Huang, X. Lu, F. Yan, J. Zhu, Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics. Appl. Phys. Lett. 95, 182903 (2009)

    Article  Google Scholar 

  24. J. Ye, C. Wang, W. Ni, X. Sun, Dielectric properties of ErFeO3 ceramics over a broad temperature range. J. Alloy Compd. 617, 850–854 (2014)

    Article  CAS  Google Scholar 

  25. L. Liu, C. Wang, D. Zhang, Q. Zhang, K. Ning, J. Wang, X. Sun, Dielectric relaxations and phase transition in laser crystals Gd2SiO5 and Yb-Doped Gd2SiO5. J. Am. Ceram. Soc. 97, 1823–1828 (2014)

    Article  CAS  Google Scholar 

  26. A. Tkach, O. Okhay, A. Almeida, P.M. Vilarinho, Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere. Acta Mater. 130, 249–260 (2017)

    Article  CAS  Google Scholar 

  27. W. Li, J. Gu, Q. He, K.H. Zhang, C. Wang, K. Jin, Y. Wang, M. Acosta, H. Wang, A.Y. Borisevich, Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films. Appl. Phys. Lett. 112, 182906 (2018)

    Article  Google Scholar 

  28. C. Wang, C. Lei, G. Wang, X. Sun, T. Li, S. Huang, H. Wang, Y. Li, Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J. Appl. Phys. 113, 094103 (2013)

    Article  Google Scholar 

  29. X. Sun, J. Deng, L. Liu, S. Liu, D. Shi, L. Fang, B. Elouadi, Dielectric properties of BiAlO3-modified (Na, K, Li) NbO3 lead-free ceramics. Mater. Res. Bull. 73, 437–445 (2016)

    Article  CAS  Google Scholar 

  30. F. Rehman, J.-B. Li, J.-S. Zhang, M. Rizwan, C. Niu, H.-B. Jin, Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics. J. Appl. Phys. 118, 214101 (2015)

    Article  Google Scholar 

  31. L. Liu, C. Wang, X. Sun, G. Wang, C. Lei, T. Li, Oxygen-vacancy-related relaxations of Sr3CuNb2O9 at high temperatures. J. Alloy Compd. 552, 279–282 (2013)

    Article  CAS  Google Scholar 

  32. S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, Dielectric properties of CaCu3Ti4O12 based multiphased ceramics. J. Eur. Ceram. Soc. 26, 1245–1257 (2006)

    Article  CAS  Google Scholar 

  33. L. Zhang, Z.-J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  34. S. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  35. D. Zhang, Q. Li, C. Wang, N. Zhang, H. Li, High-temperature dielectric properties of TbFeO3 ceramics. Ceram. Int. 42, 657–660 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We warmly thank the National Natural Science Foundation of China (Grant Nos. 11474111 and 11604281) and the Nanhu Scholars Program of XYNU, China, for their financial support and the members of the Analysis Center of HUST for their cooperation in sample characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songliu Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Fu, Q., Chen, X. et al. Colossal dielectric response in erbium iron garnet ceramics. J Mater Sci: Mater Electron 32, 290–298 (2021). https://doi.org/10.1007/s10854-020-04775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04775-9

Navigation