Skip to main content

Advertisement

Log in

The fabrication of hierarchically porous carbon-coated nickel oxide nanomaterials with enhanced electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In our current work, hierarchically porous carbon-coated nickel oxide nanoplates were successfully synthesized through Ni(OH)2 cladding with resorcinol and formaldehyde resin after subsequent carbonization process. The as-prepared NiO-coated carbon nanomaterials were examined, using TEM, XRD, Raman, XPS, TG and BET measurements. The optimized electrode (NiO/Ni@C-450 nanoplates) has regular hexagonal core–shell structure, uniform diameter and thickness. Owing to its porous core–shell structure, high specific surface area (457.03 m2 g−1) and high contents of Ni (6.43 at.%) and O (19.35 at.%) elements, NiO/Ni@C-450 electrode possesses the specific capacitance of 276.1 F/g at 0.5 A/g and good coulombic efficiency. Because the coated carbon layer enables to protect NiO structure and extends the cyclic life of electrode materials, the capacitance retention of NiO/Ni@C-450 electrode is 88.7% after 1000 cycles, which is much higher than that of NiO electrode. All these measured results demonstrate that the as-prepared NiO/Ni@C-450 nanoplate is supposed to be a promising material with easy preparation, high specific capacitance and good cyclic stability properties for potential applications in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.V.V. Muralee Gopi, A.E. Reddy, H.J. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J. Mater. Chem. A 6, 7439–7448 (2018)

    Article  CAS  Google Scholar 

  2. Y.Y. Zheng, J. Xu, X.S. Yang, Y.J. Zhang, Y.Y. Shang, X.Y. Hu, Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018)

    Article  CAS  Google Scholar 

  3. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci. Mater. Electron. 27, 4541–4550 (2016)

    Article  CAS  Google Scholar 

  4. Z.G. Guo, J. Zhao, C. Sun, Z.S. Cai, F.Y. Ge, Flexible self-standing carbon fabric electrode prepared by using simple route for wearable applications. J. Mater. Sci. Mater. Electron. 31, 1554–1565 (2019)

    Article  CAS  Google Scholar 

  5. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)

    Article  CAS  Google Scholar 

  6. A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189–196 (2018)

    Article  CAS  Google Scholar 

  7. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  8. X. Li, C. Sun, Z.S. Cai, F.Y. Ge, High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric. Appl. Surf. Sci. 473, 967–975 (2019)

    Article  CAS  Google Scholar 

  9. X. Zhang, J. Luo, P. Tang, X. Ye, X. Peng, H. Tang, S.G. Sun, J. Fransaer, A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading. Nano Energy 31, 311–321 (2017)

    Article  CAS  Google Scholar 

  10. M. Rahimi-Nasrabadi, V. Pourmohamadian, M.S. Karimi, H.R. Naderi, M.A. Karimi, K. Didehban, M.R. Ganjali, Assessment of supercapacitive performance of europium tungstate nanoparticles prepared via hydrothermal method. J. Mater. Sci. Mater. Electron. 28, 12391–12398 (2017)

    Article  CAS  Google Scholar 

  11. K. Dai, C. Liang, J. Dai, L. Lu, G. Zhu, Z. Liu, Q. Liu, Y. Zhang, High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance. Mater. Chem. Phys. 143, 1344–1351 (2014)

    Article  CAS  Google Scholar 

  12. C. Sun, X. Li, Z.S. Cai, F.Y. Ge, Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor. Electrochim. Acta 296, 617–626 (2019)

    Article  CAS  Google Scholar 

  13. Z. Yong, G.Y. Li, L. Yan, L.Z. Wang, A.Q. Zhang, Y.H. Song, B.L. Huang, Electrochemical investigation of MnO2 electrode material for supercapacitors. Int. J. Hydrogen Energy 36, 11760–11766 (2011)

    Article  CAS  Google Scholar 

  14. Z. Shi, L. Xing, Y. Liu, Y. Gao, J. Liu, A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors. Carbon 129, 819–825 (2018)

    Article  CAS  Google Scholar 

  15. M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation. J. Mater. Sci. Mater. Electron. 28, 1877–1888 (2016)

    Article  CAS  Google Scholar 

  16. A. Kumar, A. Sanger, A. Kumar, R. Chandra, Single-step growth of pyramidally textured NiO nanostructures with improved supercapacitive properties. Int. J. Hydrogen Energy 42, 6080–6087 (2016)

    Article  CAS  Google Scholar 

  17. H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)

    Article  CAS  Google Scholar 

  18. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci. Mater. Electron. 28, 8588–8595 (2017)

    Article  CAS  Google Scholar 

  19. Y. Li, Z.Y. Fu, B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Func. Mater. 22, 4634–4667 (2012)

    Article  CAS  Google Scholar 

  20. G. Li, Y. Li, J. Chen, P. Zhao, D. Li, Y. Dong, L. Zhang, Synthesis and research of egg shell-yolk NiO/C porous composites as lithium-ion battery anode material. Electrochim. Acta 245, 941–948 (2017)

    Article  CAS  Google Scholar 

  21. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, J.P. Tu, NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J. Power Sources 259, 98–105 (2014)

    Article  CAS  Google Scholar 

  22. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. Acs Sustain. Chem. Eng. 1, 1110–1118 (2013)

    Article  CAS  Google Scholar 

  23. C. Sun, J. Zhao, Z.G. Guo, Y.P. Zhao, Z.S. Cai, F.Y. Ge, A novel method to fabricate nitrogen and oxygen co-doped flexible cotton based electrode for wearable supercapacitor. ChemElectroChem 6, 4049–4058 (2019)

    Article  CAS  Google Scholar 

  24. E. Topçu, Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: a novel electrochemical sensor for determination of resorcinol. Mater. Res. Bull. 121, 110629 (2020)

    Article  CAS  Google Scholar 

  25. X. Li, J. Zhao, Z.S. Cai, F.Y. Ge, Free-standing carbon electrode materials with three-dimensional hierarchically porous structure derived from waste dyed silk fabrics. Mater. Res. Bull. 107, 355–360 (2018)

    Article  CAS  Google Scholar 

  26. K.S. Lee, M.S. Park, J.D. Kim, Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes. Colloids Surf. A 533, 323–329 (2017)

    Article  CAS  Google Scholar 

  27. Y.L. Shih, C.L. Wu, T.Y. Wu, D.H. Chen, Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors. Nanotechnology 30, 115601 (2019)

    Article  CAS  Google Scholar 

  28. X. Jie, D. Wang, Y. Ye, W. Wei, L. Duan, L. Wang, H. Bao, W. Xu, Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org. Electron. 24, 153–159 (2015)

    Article  CAS  Google Scholar 

  29. D. Zeng, Y. Dou, M. Li, M. Zhou, H. Li, K. Jiang, F. Yang, J. Peng, Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J. Mater. Sci. 53, 8372–8384 (2018)

    Article  CAS  Google Scholar 

  30. S. Liu, S.C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J.H. Park, K.Y. Chung, S. Chan Jun, Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J. Mater. Chem. A 5, 1043–1049 (2017)

    Article  CAS  Google Scholar 

  31. A.I. Inamdar, Y. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 196, 2393–2397 (2011)

    Article  CAS  Google Scholar 

  32. Y. Liu, Z. Zhang, T. Wang, Enhanced hydrogen storage performance of three-dimensional hierarchical porous graphene with nickel nanoparticles. Int. J. Hydrogen Energy 43, 11120–11131 (2018)

    Article  CAS  Google Scholar 

  33. S. Hwang, S. Lee, J.S. Yu, Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl. Surf. Sci. 253, 5656–5659 (2007)

    Article  CAS  Google Scholar 

  34. G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, L.S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015)

    Article  CAS  Google Scholar 

  35. V. Senthilkumar, F.B. Kadumudi, N.T. Ho, J.W. Kim, S. Park, J.S. Bae, W.M. Choi, S. Cho, Y.S. Kim, NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications. J. Power Sources 303, 363–371 (2016)

    Article  CAS  Google Scholar 

  36. C. Liu, G. Shi, G. Wang, P. Mishra, S. Jia, X. Jiang, P. Zhang, Y. Dong, Z. Wang, Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers. RSC Adv. 9, 6898–6906 (2019)

    Article  CAS  Google Scholar 

  37. Y. Wen, T.E. Rufford, D. Hulicova-Jurcakova, X. Zhu, L. Wang, Structure control of nitrogen-rich graphene nanosheets using hydrothermal treatment and formaldehyde polymerization for supercapacitors. ACS Appl. Mater. Interfaces 8, 18051–18059 (2016)

    Article  CAS  Google Scholar 

  38. H. Sheng, M. Wei, A. D’Aloia, G. Wu, Heteroatom polymer-derived 3D high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors. ACS Appl. Mater. Interfaces. 8, 30212–30224 (2016)

    Article  CAS  Google Scholar 

  39. G. Xu, H. Dou, X. Geng, J. Han, L. Chen, H. Zhu, Free standing three-dimensional nitrogen-doped carbon nanowire array for high-performance supercapacitors. Chem. Eng. J. 308, 222–228 (2017)

    Article  CAS  Google Scholar 

  40. B. Qiu, C. Pan, W. Qian, Y. Peng, L. Qiu, F. Yan, Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. A 1, 6373 (2013)

    Article  CAS  Google Scholar 

  41. J. Xu, D. Wang, Y. Yuan, W. Wei, S. Gu, R. Liu, X. Wang, L. Liu, W. Xu, Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22, 1355–1363 (2015)

    Article  CAS  Google Scholar 

  42. Y. Zhang, T. Mao, H. Wu, L. Cheng, L. Zheng, Carbon nanotubes grown on flax fabric as hierarchical all-carbon flexible electrodes for supercapacitors. Adv. Mater. Interfaces 4, 1601123 (2017)

    Article  CAS  Google Scholar 

  43. C. Sun, X. Li, J. Zhao, Z.S. Cai, F.Y. Ge, A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT:PSS and MWCNTs for high-performance supercapacitor. Electrochim. Acta 317, 42–51 (2019)

    Article  CAS  Google Scholar 

  44. C. Wei, Q. Xu, Z. Chen, W. Rao, L. Fan, Y. Yuan, Z. Bai, J. Xu, An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohyd. Polym. 169, 50–57 (2017)

    Article  CAS  Google Scholar 

  45. C.V.V. Muralee Gopi, P.J. Singh Rana, R. Padma, R. Vinodh, H.J. Kim, Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. J. Mater. Chem. A 7, 6374–6386 (2019)

    Article  CAS  Google Scholar 

  46. R. Suresh Babu, R. Vinodh, A.L.F. de Barros, L.M. Samyn, K. Prasanna, M.A. Maier, C.H.F. Alves, H.J. Kim, Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode. Chem. Eng. J. 366, 390–403 (2019)

    Article  CAS  Google Scholar 

  47. W. Cai, T. Lai, W. Dai, J. Ye, A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J. Power Sources 255, 170–178 (2014)

    Article  CAS  Google Scholar 

  48. H. Tabassum, A. Mahmood, Q. Wang, W. Xia, Z. Liang, B. Qiu, R. Zhao, R. Zou, Hierarchical cobalt hydroxide and B/N Co-doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors. Sci. Rep. 7, 43084 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51203018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Sun, H., Guo, Z. et al. The fabrication of hierarchically porous carbon-coated nickel oxide nanomaterials with enhanced electrochemical properties. J Mater Sci: Mater Electron 31, 20641–20653 (2020). https://doi.org/10.1007/s10854-020-04585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04585-z

Navigation