Skip to main content

Advertisement

Log in

Scalable chemical approach to prepare crystalline Mn2V2O7 nanoparticles: introducing a new long-term cycling cathode material for lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a new cathode material, Mn2V2O7, for lithium-ion batteries is identified. A simple chemical method is proposed to synthesize newly identified Mn2V2O7 material for large scale production. The synthesis of nanosized manganese vanadate in high yield with improved electrochemical performance toward lithium-ion battery applications is of fundamental and technological advancement. The newly identified Mn2V2O7 holds a large reversible capacity of 242 mAh/g at 0.2 C rate with 82% of capacitance retention after 1442 cycles and thereby makes it suitable for lithium-ion battery fabrication. This long-term cycling is the highest reported for Mn2V2O7 to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Jiang, C. Han, B. Li, Y. He, Z. Lin, In-Situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10, 2728–2735 (2016)

    Article  CAS  Google Scholar 

  2. S. Zhao, Z. Wang, Y. He, B. Jiang, Y. Harn, X. Liu, F. Yu, F. Feng, Q. Shen, Z. Lin, Interconnected Ni(HCO3)2 hollow spheres enabled by self-sacrificial templating with enhanced lithium storage properties. ACS Energy Lett. 2, 111–116 (2017)

    Article  CAS  Google Scholar 

  3. C. Niu, J. Meng, C. Han, K. Zhao, MYan Mai L., VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)

    Article  CAS  Google Scholar 

  4. G. Yang, S. Li, M. Wu, C. Wang, Zinc pyrovanadate nanosheets of atomic thickness: excellent Li-storage properties and investigation of their electrochemical mechanism. J. Mater. Chem. A. 4, 10974–10985 (2016)

    Article  CAS  Google Scholar 

  5. H. Wu, M. Qin, X. Li, Z. Cao, B. Jia, Z. Zhang, D. Zhang, X. Qu, A.A. Volinsky, One step synthesis of vanadium pentoxide sheets as cathodes for lithium ion batteries. Electrochim.Acta 206, 301–306 (2016)

    Article  CAS  Google Scholar 

  6. H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130, 5361–5367 (2008)

    Article  CAS  Google Scholar 

  7. Y.L. Cheah, V. Aravindan, S. Madhavi, Improved elevated temperature performance of al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Inter. 4, 3270–3277 (2012)

    Article  CAS  Google Scholar 

  8. M. Panagopoulou, D. Vernardou, E. Koudoumas, N. Katsarakis, D. Tsoukalas, Y.S. Raptis, Tunable properties of Mg-Doped V2O5 thin films for energy applications: Li-ion batteries and electrochromics. J.Phys. Chem.C. 121, 70–79 (2017)

    Article  CAS  Google Scholar 

  9. X. Min, D. Mu, R. Li, C. Dai, Cycling stability of the Li 3 (V 0.9 Mg 0.1) 2 (PO 4) 3/C cathode with an increase in the charge cut-off voltage. N. J. Chem. 41, 3163–3171 (2017)

    Article  CAS  Google Scholar 

  10. T. Jayalakshmi, K. Nagaraju, G.. Nagaraju, Enhanced lithium storage of mesoporous vanadium dioxide (B) nanorods by reduced graphene oxide support. J. Energy Chem. 27, 183–189 (2018)

    Article  Google Scholar 

  11. G. Nagaraju, T. Jayalashmi, S. Ashok, K. Manjunath, Synthesis of V2O5 nanoparticles: cathode materials for lithium-ion batteries. Bull. Mater. Sci. 42, 88 (2019)

    Article  Google Scholar 

  12. L. Liu, G. Fang, B. Huang, J. Zhou, K. Cai, S. Liang, Electrochemical performance of AlV3O9 nanoflowers for lithium ion batteries application. J. Alloys Compd. 723, 92–99 (2017)

    Article  CAS  Google Scholar 

  13. D. Wei, X. Li, Y. Zhu, J. Liang, K. Zhang, Y. Qian, One-pot hydrothermal synthesis of peony-like Ag/Ag0.68V2O5 hybrid as high-performance anode and cathode materials for rechargeable lithium batteries. Nanoscale 6, 5239–5244 (2014)

    Article  CAS  Google Scholar 

  14. P. Cui, Y. Liang, D. Zhan, Y. Zhao, Synthesis and characterization of NiV3O8 powder as cathode material for lithium-ion batteries. Electrochim. Acta 148, 261–265 (2014)

    Article  CAS  Google Scholar 

  15. M. Simoes, Y. Surace, S. Yoon, C. Battaglia, S. Pokrant, A. Weidenkaff, Hydrothermal vanadium manganese oxides:anode and cathode materials for lithium-ion batteries. J. Power Sources 291, 66–74 (2015)

    Article  CAS  Google Scholar 

  16. Y. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P. Lu, L. Yang, H. Yang, Q. Yang, Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl. Mater. Inter. 7, 17433–17440 (2015)

    Article  CAS  Google Scholar 

  17. J.H. Liao, F. Leroux, Y. Piffard, D. Guyomard, C. Payen, Synthesis, structures, magnetic properties, and phase transition of manganese (II) divanadate: Mn2V2O7. Solid State Chem. 121, 214–224 (1996)

    Article  CAS  Google Scholar 

  18. Y. Liu, Y. Qian, Controllable synthesis of β-Mn2V2O7 microtubes and hollow microspheres. Front. Chem. China 3, 467–470 (2008)

    Article  Google Scholar 

  19. H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang, Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties. Nanotechnology 18, 115616 (2007)

    Article  Google Scholar 

  20. L.Z. Pei, Y.Q. Pei, Y.K. Xie, C.Z. Yuan, D.K. Li, Q.F. Zhang, Polyvinyl pyrrolidone-assisted synthesis of crystalline manganese vanadate microtubes. Mater. Res. 16, 173–180 (2013)

    Article  CAS  Google Scholar 

  21. L. Shreenivasa, K. Yogesh, S.A. Prashanth, R. Viswanatha, S. Ashoka, Enhancement of cycling stability and capacity of lithium secondary battery by engineering highly porous AlV3O9. J. Mater. Sci. 55, 1648–1658 (2020)

    Article  CAS  Google Scholar 

  22. L. Shreenivasa, R.T. Yogeeshwari, R. Viswanatha, G. Sriram, Y. Kalegowda, M.D. Kurkuri, S. Ashoka, An introduction of new nanostructured Zn0. 29V2O5 cathode material for lithium ion battery: a detailed studies on synthesis, characterization and lithium uptake. Mater. Res. Express 6, 115035 (2019)

    Article  CAS  Google Scholar 

  23. L. Shreenivasa, S.A. Prashanth, H. Eranjaneya, R. Viswanatha, K. Yogesh, G. Nagaraju, S. Ashoka, Engineering of highly conductive and mesoporous ZrV2O7: a cathode material for lithium secondary batteries. J. Solid State Electrochem. 23, 1201–1209 (2019)

    Article  CAS  Google Scholar 

  24. S.W. Lee, H. Kim, M.S. Kim, H.C. Youn, K. Kang, B.W. Cho, K.C. Roh, K.B. Kim, Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 315, 261–268 (2016)

    Article  CAS  Google Scholar 

  25. S. Lakkepally, Y. Kalegowda, N. Ganganagappa, A. Siddaramanna, A new and effective approach for Fe2V4O13 nanoparticles synthesis: evaluation of electrochemical performance as cathode for lithium secondary batteries. J.Alloys Compd. 737, 665–671 (2018)

    Article  CAS  Google Scholar 

  26. Z. Y.Sun, Y. Xie, Li, Enhanced lithium storage performance of V2O5 with oxygen vacancy. RSC Adv. 8, 39371–39376 (2018)

    Article  Google Scholar 

  27. F. Orsini, E. Baudrin, S. Denis, L. Dupont, M. Touboul, D. Guyomard, Y. Piffard, J.M. Tarascon, Chimie douce’synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs Li. Solid State Ionics 107, 123–133 (1998)

    Article  CAS  Google Scholar 

  28. P. Hao, T. Zhu, Q. Su, J. Lin, R. Cui, X. Cao, Y. Wang, A. Pan, Electrospun Single Crystalline Fork-like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Batteries (Chem, Front, 2018). https://doi.org/10.3389/fchem.2018.00195

    Book  Google Scholar 

  29. X. Cao, J. Xie, H. Zhan, Y. Zhou, Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Mater. Chem. Phys. 98, 71–75 (2006)

    Article  CAS  Google Scholar 

  30. Q. Kuang, Y. Zhao, Y. Dong, Q. Fan, Sol-gel synthesized zirconium pyrovanadate as a high-capacity cathode for rechargeable Li batteries. Electrochim. Act. 170, 229–233 (2015)

    Article  CAS  Google Scholar 

  31. Y. Liu, M. Xu, B. Shen, Z. Xia, Y. Li, Y. Wu, Q. Li, Facile synthesis of mesoporous NH4V4O10 nanoflowers with high performance as cathode material for lithium battery. J. Mater. Sci. 53, 2045–2053 (2018)

    Article  CAS  Google Scholar 

  32. H. Liu, Y. Wang, K.Wang,Y. Wang, H. Zhou, Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J.Power Sources 192, 668–673 (2009)

    Article  CAS  Google Scholar 

  33. J. Meng, Z. Liu, C. Niu, X. Xu, X. Liu, G. Zhang, X. Wang, M. Huang, Y. Yu, L. Mai, A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J. Mater. Chem. 4, 4893–4899 (2016)

    Article  CAS  Google Scholar 

  34. Y. Cao, D. Fang, R. Liu, M. Jiang, H. Zhang, G. Li, Z. Luo, X. Liu, J. Xu, W. Xu, C. Xiong, Three-dimensional porous iron vanadate nanowire arrays as a high-performance lithium-ion battery. ACS Appl. Mater. Inter. 7, 27685–27693 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author, Ashoka S (SA) acknowledges the Science and Engineering Research Board (ECR/2017/000743), Government of India, for financial support. The authors also express sincere gratitude to the DSU management for extending constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashoka.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreenivasa, L., Viswanatha, R., Ganesan, S. et al. Scalable chemical approach to prepare crystalline Mn2V2O7 nanoparticles: introducing a new long-term cycling cathode material for lithium-ion battery. J Mater Sci: Mater Electron 31, 19638–19646 (2020). https://doi.org/10.1007/s10854-020-04490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04490-5

Navigation