Skip to main content
Log in

Annealing effect to constitutive behavior of Sn–3.0Ag–0.5Cu solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Ag–Cu based solder alloys are replacing Sn–Pb solders in electronic packaging structures of commercial electric devices. In order to evaluate the structural reliability, the mechanical property of solder material is critical to the numerical simulations. Annealing process has been found to stabilize material properties of Sn–37Pb solder material. In the current study, the annealing effect on tensile behaviour of Sn–3.0Ag–0.5Cu (SAC305) solder material is investigated and compared with Sn–37Pb solder. It is found that the tensile strength for both materials are more stabilized and consistent after the annealing process, nevertheless, the annealing process will improve the plasticity of SAC305 solder dominated by dislocation motion, and impede the occurrence of hardening deformation in Sn–37Pb solder dominated by grain-boundary sliding mechanism. Furthermore, the annealing effect is quantified in the proposed constitutive model based on unified creep–plasticity theory. The parameters are calibrated against the measured stress–strain relationships at the tensile strain rates ranging from 1 × 10−4 to 1 × 10−3 s−1. The numerical regressions for dominant parameters in the proposed model reveal the intrinsic differences between SAC305 and Sn–37Pb solders under annealing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Osterman, Being “RoHS Exempt” in a Pb-free world (University of Maryland, College Park, 2006)

    Google Scholar 

  2. I.C. Turner, B.D. Dunn, C. Barnes, Solder. Surf. Mt. Technol. 25, 218–228 (2013)

    Article  CAS  Google Scholar 

  3. B.D. Dunn, G. Mozdzen, Solder. Surf. Mt. Technol. 26, 139–146 (2014)

    Article  CAS  Google Scholar 

  4. H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141–1158 (2009)

    Article  CAS  Google Scholar 

  5. X. Long, X. He, Y. Yao, J. Mater. Sci. 52, 6120–6137 (2017)

    Article  CAS  Google Scholar 

  6. S. Wang, Y. Yao, X. Long, J. Mater. Sci.-Mater. Electron. 28, 17682–17692 (2017)

    Article  CAS  Google Scholar 

  7. J.W. Jang, A.P.D. Silva, J.K. Lin, D.R. Frear, J. Mater. Res. 19, 1826–1834 (2004)

    Article  CAS  Google Scholar 

  8. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, J.K. Kivilahti, J. Mater. Res. 17, 291–301 (2011)

    Article  Google Scholar 

  9. J. Wang, X. Long, Y. Yao, J. Mater. Sci.-Mater. Electron. 28, 14884–14892 (2017)

    Article  CAS  Google Scholar 

  10. X. Long, S. Wang, X. He, Y. Yao, J. Mater. Res. 32, 3089–3099 (2017)

    Article  CAS  Google Scholar 

  11. Directive EU, European Parliament legislative resolution of 24 November 2010 on the proposal for a directive of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment (A7-0196/2010, 2010)

  12. Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428–475 (2010)

    Article  CAS  Google Scholar 

  13. Y. Yao, X. Long, L.M. Keer, Appl. Mech. Rev. 69, 040802 (2017)

    Article  Google Scholar 

  14. X. Long, Y. Yao, Y. Wu, W. Xia, L. Ren, International Conference on Electronic Packaging Technology (ICEPT), Harbin 2017, pp. 63–68

  15. F. Qin, T. An, N. Chen, J. Appl. Mech. 77, 1008 (2010)

    Article  Google Scholar 

  16. N. Bai, X. Chen, Int. J. Plasticity 25, 2181–2203 (2009)

    Article  CAS  Google Scholar 

  17. Annual Book of ASTM Standards, Standard test methods for tension testing of metallic materials (American Association State, West Conshohocken, 2009)

    Google Scholar 

  18. H. Ma, J. Mater. Sci. 44, 3841–3851 (2009)

    Article  CAS  Google Scholar 

  19. F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414–1420 (2003)

    Article  CAS  Google Scholar 

  20. N. Bai, X. Chen, H. Gao, Mater. Design. 30, 122–128 (2009)

    Article  CAS  Google Scholar 

  21. G. Xiao, G. Yuan, C. Jia, X. Yang, Z. Li, X. Shu, Mater. Sci. Eng. A 613, 336–339 (2014)

    Article  CAS  Google Scholar 

  22. X. Long, S. Wang, Y. Feng, Y. Yao, L.M. Keer, Mater. Sci. Eng. A 696, 90–95 (2017)

    Article  CAS  Google Scholar 

  23. X. Long, Y. Feng, Y. Yao, Int. J. Appl. Mec. 9, 1750057 (2017)

    Article  Google Scholar 

  24. Y. Yao, L.M. Keer, M.E. Fine, Intermetallics 18, 1603–1611 (2010)

    Article  Google Scholar 

  25. X. Chen, G. Chen, Mater. Design. 28, 85–94 (2007)

    Article  Google Scholar 

  26. Y. Yao, X. He, L.M. Keer, M.E. Fine, Acta Mater. 83, 160–168 (2015)

    Article  CAS  Google Scholar 

  27. Y. Yao, L.M. Keer, Microelectron. Reliab. 53, 629–637 (2013)

    Article  CAS  Google Scholar 

  28. F. Dunne, N. Petrinic, Introduction to computational plasticity. (Oxford University Press, Oxford, 2005)

    Google Scholar 

  29. S. Wen, L.M. Keer, H. Mavoori, J. Electron. Mater. 30, 1190–1196 (2001)

    Article  CAS  Google Scholar 

  30. Dassault Systemes Simulia Corp., ABAQUS User’s Manual 6.14-4 (Hibbitt, Karlsson & Sorensen, Rhode Island, 2014)

  31. T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Database for solder properties with emphasis on new lead-free solders, Colorado (2002)

  32. P. Lall, D. Zhang, V. Yadav, D. Locker, Microelectron. Reliab. 62, 4–17 (2016)

    Article  CAS  Google Scholar 

  33. M. Maleki, J. Cugnoni, J. Botsis, Mater. Sci. Eng. A 661, 132–144 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports provided by the National Natural Science Foundation of China (Nos. 51508464 and 11572249), the Natural Science Foundation of Shaanxi Province (No. 2017JM1013), the Fundamental Research Funds for the Central Universities (No. 3102016ZY017), and the Astronautics Supporting Technology Foundation of China (No. 2017-HT-XG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Tang, W., Wang, S. et al. Annealing effect to constitutive behavior of Sn–3.0Ag–0.5Cu solder. J Mater Sci: Mater Electron 29, 7177–7187 (2018). https://doi.org/10.1007/s10854-018-8705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8705-0

Navigation