Skip to main content
Log in

Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of 2% Zr introduction in Ba0.8Ca0.2TiO3 (BCT) system on its electrical and electrocaloric properties was investigated. BCT and Ba0.8Ca0.2Zr0.02Ti0.98O3 (BCZT) ceramics synthesized by solid-state processing were crystallized in a pure perovskite phase with a group space P4mm. After Zr insertion, the enhanced dielectric constant was obtained around the Curie temperature (Tc) in BCZT ceramic (εr = 6330 at Tc = 388 K) compared to BCT ceramic (εr = 5080 at Tc = 388.6 K). Moreover, the large-signal piezoelectric coefficient \((d_{33}^{*} )\) was improved from 270 to 310 pm/V in BCT and BCZT ceramics, respectively, under a moderate electric field of 25 kV/cm. The electrocaloric effect was determined via indirect and direct methods. In the indirect approach, the electrocaloric temperature change (ΔT) was calculated via Maxwell relation, and the measured ferroelectric polarization P (E, T) extracted from the P–E curves recorded at 24 kV/cm. The maximum values of ΔT = 0.68 K and the electrocaloric responsivity ζ = 0.283 K mm/kV obtained at 385 K in BCZT ceramic were found to be higher than those observed in BCT ceramic (ΔT = 0.37 K and ζ = 0.154 K mm/kV at 387 K). In the direct approach, ΔT was measured utilizing a modified high-resolution calorimeter at 14 kV/cm. As the direct method is more sensitive to the latent heat, it provided larger values for smaller applied field, i.e., ΔT = 0.474 and 0.668 K for BCT and BCZT ceramics, respectively. A significant ζ of 0.477 K mm/kV was obtained in BCZT at 385 K and 14 kV/cm that matches the values found in lead-based materials. These results suggest that BCZT lead-free ceramics could have an excellent potential to be used in solid-state refrigeration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Lv, X.X. Zhang, J. Wu, J. Mater. Chem. A 8, 10026 (2020)

    CAS  Google Scholar 

  2. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.F. Li, S. Zhang, Prog. Mater. Sci. 102, 72 (2019)

    CAS  Google Scholar 

  3. Z. Hanani, S. Merselmiz, A. Danine, N. Stein, D. Mezzane, M. Amjoud, M. Lahcini, Y. Gagou, M. Spreitzer, D. Vengust, Z. Kutnjak, M. El Marssi, I.A. Luk’yanchuk, M. Gouné, J. Adv. Ceram. 9, 210 (2020)

    CAS  Google Scholar 

  4. P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)

    CAS  Google Scholar 

  5. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Mater. 2, 1 (2016)

    Google Scholar 

  6. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Google Scholar 

  7. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    CAS  Google Scholar 

  8. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Google Scholar 

  9. Z. Hanani, D. Mezzane, M. Amjoud, Y. Gagou, K. Hoummada, C. Perrin, A. G. Razumnaya, Z. Kutnjak, A. Bouzina, M. El Marssi, M. Gouné, and B. Rožič, J. Mater. Sci. Mater. Electron. (2020).

  10. L.-Q. Cheng, J.-F. Li, J. Mater. 2, 25 (2016)

    Google Scholar 

  11. S. Siddiqui, D. Il Kim, E. Roh, L.T. Duy, T.Q. Trung, M.T. Nguyen, N.E. Lee, Nano Energy 30, 434 (2016)

    CAS  Google Scholar 

  12. Z. Hanani, E.H. Ablouh, M. ‘barek Amjoud, D. Mezzane, S. Fourcade, M. Gouné, Ceram. Int. 44, 10997 (2018)

    CAS  Google Scholar 

  13. M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, J. Mater. Sci. Mater. Electron. 24, 4684 (2013)

    CAS  Google Scholar 

  14. H. Gong, X. Wang, S. Zhang, H. Wen, L. Li, J. Eur. Ceram. Soc. 34, 1733 (2014)

    CAS  Google Scholar 

  15. H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 3, 451 (2013)

    CAS  Google Scholar 

  16. A. Koka, Z. Zhou, H.A. Sodano, Energy Environ. Sci. 7, 288 (2014)

    CAS  Google Scholar 

  17. N. Novak, Z. Kutnjak, R. Pirc, EPL Europhysics Lett. 103, 47001 (2013)

    Google Scholar 

  18. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, Appl. Phys. Rev. 4, 041305 (2017)

    Google Scholar 

  19. T. Mitsui, W.B. Westphal, Phys. Rev. 124, 1354 (1961)

    CAS  Google Scholar 

  20. N. Pisitpipathsin, P. Kantha, K. Pengpat, G. Rujijanagul, Ceram. Int. 39, S35 (2013)

    CAS  Google Scholar 

  21. R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N.M. Alford, J. Electroceram. 22, 245 (2009)

    CAS  Google Scholar 

  22. I. Szafraniak-Wiza, L. Kozielski, T. Sebastian, Phase Transitions 89, 803 (2016)

    CAS  Google Scholar 

  23. A. Purwanto, D. Hidayat, Y. Terashi, K. Okuyama, Chem. Mater. 20, 7440 (2008)

    CAS  Google Scholar 

  24. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Mater. Lett. 64, 2325 (2010)

    CAS  Google Scholar 

  25. B. Asbani, Y. Gagou, J.L.L. Dellis, A. Lahmar, M. Amjoud, D. Mezzane, Z. Kutnjak, M. El Marssi, Solid State Commun. 237–238, 49 (2016)

    Google Scholar 

  26. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, M. El El Marssi, J. Alloys Compd. 713, 164 (2017)

    CAS  Google Scholar 

  27. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Luk’yanchuk, M. Gouné, Superlattices Microstruct. 127, 109 (2019)

    CAS  Google Scholar 

  28. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Am. Ceram. Soc. 93, 2942 (2010)

    CAS  Google Scholar 

  29. V. Buscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajović, Y. Ren, J. Phys. Condens. Matter 26, 065901 (2014)

    Google Scholar 

  30. H. Bao, C. Zhou, D. Xue, and J. Gao, 465401, (2010).

  31. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 1489 (2002)

    CAS  Google Scholar 

  32. Y. Bai, A. Matousek, P. Tofel, V. Bijalwan, B. Nan, H. Hughes, T.W. Button, J. Eur. Ceram. Soc. 35, 3445 (2015)

    CAS  Google Scholar 

  33. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, J. Eur. Ceram. Soc. 32, 891 (2012)

    CAS  Google Scholar 

  34. Z. Hanani, D. Mezzane, M. Amjoud, A.G. Razumnaya, S. Fourcade, Y. Gagou, K. Hoummada, M. El Marssi, M. Gouné, J. Mater. Sci. Mater. Electron. 30, 6430 (2019)

    CAS  Google Scholar 

  35. G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)

    Google Scholar 

  36. B. Asbani, J.L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M. El Marssi, Appl. Phys. Lett. 106, 042902 (2015)

    Google Scholar 

  37. X. Wang, F. Tian, C. Zhao, J. Wu, Y. Liu, B. Dkhil, M. Zhang, Z. Gao, X. Lou, Appl. Phys. Lett. 107, 252905 (2015)

    Google Scholar 

  38. S. Merselmiz, Z. Hanani, D. Mezzane, M. Spreitzer, A. Bradeško, D. Fabijan, D. Vengust, M. Amjoud, L. Hajji, Z. Abkhar, A. G. Razumnaya, B. Rožič, I. A. Luk’yanchuk, and Z. Kutnjak, Ceram. Int. 46, 23867 (2020)

  39. H. Yao, K. Ema, C.W. Garland, Rev. Sci. Instrum. 69, 172 (1998)

    CAS  Google Scholar 

  40. Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956 (2006)

    CAS  Google Scholar 

  41. B. Rožič, B. Malič, H. Uršič, J. Holc, M. Kosec, B. Neese, Q.M. Zhang, Z. Kutnjak, Ferroelectrics 405, 26 (2010)

    Google Scholar 

  42. L. Zhang, X. Wang, H. Liu, X. Yao, J. Am. Ceram. Soc. 93, 1049 (2010)

    CAS  Google Scholar 

  43. C. Baek, J.E. Wang, S. Ryu, J.H. Kim, C.K. Jeong, K. Il Park, D.K. Kim, RSC Adv. 7, 2851 (2017)

    CAS  Google Scholar 

  44. H. Chen, C. Yang, C. Fu, J. Shi, J. Zhang, W. Leng, J. Mater. Sci. Mater. Electron. 19, 379 (2008)

    CAS  Google Scholar 

  45. S. Ye, J. Fuh, L. Lu, Y.L. Chang, J.R. Yang, RSC Adv. 3, 20693 (2013)

    CAS  Google Scholar 

  46. M. Sindhu, N. Ahlawat, S. Sanghi, R. Kumari, A. Agarwal, J. Appl. Phys. 114, 164106 (2013)

    Google Scholar 

  47. D. Xu, X. Yue, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, S. Du, Ceram. Int. 45, 11421 (2019)

    CAS  Google Scholar 

  48. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, S. Du, J. Alloys Compd. 773, 853 (2019)

    CAS  Google Scholar 

  49. N. Binhayeeniyi, P. Sukwisute, S. Nawae, N. Muensit, Materials (Basel). 13, 315 (2020)

    CAS  Google Scholar 

  50. S. Yun, X. Wang, J. Shi, J. Zhu, D. Xu, Mater. Lett. 63, 1883 (2009)

    CAS  Google Scholar 

  51. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Scr. Mater. 61, 68 (2009)

    CAS  Google Scholar 

  52. P. Julphunthong, S. Chootin, T. Bongkarn, Ceram. Int. 39, S415 (2013)

    CAS  Google Scholar 

  53. Y. Tian, Y. Gong, D. Meng, H. Deng, B. Kuang, J. Mater. Sci. Mater. Electron. 26, 3750 (2015)

    CAS  Google Scholar 

  54. J. Liu, M. Niu, L. Wang, G. Chen, D. Xu, J. Mater. Sci. Mater. Electron. 31, 3479 (2020)

    CAS  Google Scholar 

  55. B. G. Baraskar, P. S. Kadhane, T. C. Darvade, A. R. James, and R. C. Kambale, in Ferroelectr. Their Appl. (InTech, 2018).

  56. N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Mater. Lett. 64, 305 (2010)

    CAS  Google Scholar 

  57. H. Neumann, G. Arlt, Ferroelectrics 76, 303 (1987)

    CAS  Google Scholar 

  58. A. Bradeško, L. Fulanović, M. Vrabelj, M. Otoničar, H. Uršič, A. Henriques, C.C. Chung, J.L. Jones, B. Malič, Z. Kutnjak, T. Rojac, Acta Mater. 169, 275 (2019)

    Google Scholar 

  59. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, in Front. Ferroelectr. A Spec. Issue J. Mater. Sci. (Springer US, Boston, MA, 2007), pp. 217–228.

  60. U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, A. Feteira, Mater. Res. Bull. 97, 385 (2018)

    CAS  Google Scholar 

  61. L. Jin, W. Luo, L. Wang, Y. Tian, Q. Hu, L. Hou, L. Zhang, X. Lu, H. Du, X. Wei, G. Liu, Y. Yan, J. Eur. Ceram. Soc. 39, 277 (2019)

    CAS  Google Scholar 

  62. J. Chen, J. Cheng, J. Am. Ceram. Soc. 99, 536 (2016)

    CAS  Google Scholar 

  63. X. Ren, Nat. Mater. 3, 91 (2004)

    CAS  Google Scholar 

  64. W. Bai, D. Chen, J. Zhang, J. Zhong, M. Ding, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 3598 (2016)

    CAS  Google Scholar 

  65. Y. Tian, X. Chao, L. Wei, P. Liang, Z. Yang, J. Appl. Phys. 113, 184107 (2013)

    Google Scholar 

  66. L. Wang, W. Bai, X. Zhao, F. Wen, L. Li, W. Wu, P. Zheng, J. Zhai, J. Mater. Sci. Mater. Electron. 30, 9219 (2019)

    CAS  Google Scholar 

  67. N. Chaiyo, D.P. Cann, N. Vittayakorn, J. Mater. Sci. 50, 6171 (2015)

    CAS  Google Scholar 

  68. R. Hayati, M.A. Bahrevar, Y. Ganjkhanlou, V. Rojas, J. Koruza, J. Adv. Ceram. 8, 186 (2019)

    CAS  Google Scholar 

  69. G. Hernandez-Cuevas, J. R. Leyva Mendoza, P. E. García-Casillas, C. A. Rodríguez González, J. F. Hernandez-Paz, G. Herrera-Pérez, L. Fuentes-Cobas, S. Díaz de la Torre, O. Raymond-Herrera, and H. Camacho-Montes, J. Adv. Ceram. 8, 278 (2019).

  70. R. Pirc, Z. Kutnjak, R. Blinc, Q.M. Zhang, J. Appl. Phys. 110, 074113 (2011)

    Google Scholar 

  71. M. ben Abdessalem, I. Kriaa, A. Aydi, N. Abdelmoula, Ceram. Int. 44, 13595 (2018)

    CAS  Google Scholar 

  72. M. Sanlialp, V.V. Shvartsman, M. Acosta, D.C. Lupascu, J. Am. Ceram. Soc. 99, 4022 (2016)

    CAS  Google Scholar 

  73. Y. Bai, X. Han, L. Qiao, Appl. Phys. Lett. 102, 1 (2013)

    Google Scholar 

  74. M. Sanlialp, V. V. Shvartsman, M. Acosta, B. Dkhil, and D. C. Lupascu, Appl. Phys. Lett. 106, 0 (2015).

Download references

Acknowledgements

The authors gratefully acknowledge the generous financial support of CNRST Priority Program PPR 15/2015, the Slovenian research agency grants P1-0125, J1-9147, and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 778072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoud Mezzane.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merselmiz, S., Hanani, Z., Ben Moumen, S. et al. Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics. J Mater Sci: Mater Electron 31, 17018–17028 (2020). https://doi.org/10.1007/s10854-020-04259-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04259-w

Navigation