Skip to main content
Log in

Room-temperature electrocaloric effect in (1−x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrocaloric effect (ECE) was investigated in (1−x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 (BST–xBCTZ, x = 0, 0.05, 0.1 and 0.2) ceramics synthesized using citrate–nitrate combustion derived powders. The dielectric spectroscopy revealed that the phase transition temperature increases with increasing x. The ECE was calculated using the Maxwell relation based on the PE hystersis loops. The addition of BCTZ has notable effect on the microstructure and ECE of ceramic samples. The most promising electrocaloric temperature change (△T) of 0.74 K and electrocaloric responsivity (△T/△E) of 0.247 × 10−6 K m V−1 were obtained in BST–0.05BCTZ ceramic under a moderate electric field of 30 kV/cm near cubic-to-tetragonal phase transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  2. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu et al., Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  3. H. Qiang, Z. Xu, J. Mater. Sci. 27, 9976–9980 (2016)

    CAS  Google Scholar 

  4. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 138, 15459–15464 (2016)

    Article  CAS  Google Scholar 

  5. Z. Xu, H. Qiang, Z. Chen, Y. Chen, J. Mater. Sci. 26, 578–582 (2015)

    CAS  Google Scholar 

  6. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270–1271 (2006)

    Article  CAS  Google Scholar 

  7. Y. Bai, G.P. Zheng, S.Q. Shi, J. Appl. Phys. 108, 104102 (2010)

    Article  Google Scholar 

  8. Z. Xu, H. Qiang, Mater. Lett. 191, 57–60 (2017)

    Article  CAS  Google Scholar 

  9. Y. Bai, X. Han, L. Qiao, Appl. Phys. Lett. 102, 252904 (2013)

    Article  Google Scholar 

  10. B. Asbani, J.L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M. El Marssi, Appl. Phys. Lett. 106, 042902 (2015)

    Article  Google Scholar 

  11. X. Hao, J. Zhai, Appl. Phys. Lett. 104, 022902 (2014)

    Article  Google Scholar 

  12. Z. Xu, Z. Fan, X. Liu, X. Tan, Appl. Phys. Lett. 110, 082901 (2017)

    Article  Google Scholar 

  13. Y. Bai, G.P. Zheng, K. Ding, L. Qiao, S.Q. Shi, D. Guo, J. Appl. Phys. 110, 094103 (2011)

    Article  Google Scholar 

  14. Y. Bai, X. Han, K. Ding, L.J. Qiao, Appl. Phys. Lett. 103, 162902 (2013)

    Article  Google Scholar 

  15. X.Q. Liu, T.T. Chen, M.S. Fu, Y.J. Wu, X.M. Chen, Ceram. Int. 40, 11269–11276 (2014)

    Article  CAS  Google Scholar 

  16. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Asbani, J.L. Dellis, G. Cordoyiannis, B. Allouche, H. Khemakhem, Z. Kutnjak, M. El Marssi, J. Alloys Compd. 667, 198–203 (2016)

    Article  CAS  Google Scholar 

  17. X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li, C.A. Randall, Q.M. Zhang, Adv. Funct. Mater. 24, 1300–1305 (2014)

    Article  CAS  Google Scholar 

  18. Y. Zhou, Q. Lin, W. Liu, D. Wang, RSC Adv. 6, 14084–14089 (2016)

    Article  CAS  Google Scholar 

  19. G. Singh, V.S. Tiwari, P.K. Gupta, J. Appl. Crystallogr. 46, 324–331 (2013)

    Article  CAS  Google Scholar 

  20. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)

    Article  CAS  Google Scholar 

  21. B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)

    Article  CAS  Google Scholar 

  22. Z. Xu, H. Qiang, J. Sol-Gel. Sci. Technol. 77, 650–653 (2016)

    Article  CAS  Google Scholar 

  23. J.H. Qiu, Q. Jiang, J. Appl. Phys. 105, 034110 (2009)

    Article  Google Scholar 

  24. Z. Xu, H. Qiang, Y. Chen, C. Nie, Ceram. Int. 40, 4617–4621 (2014)

    Article  CAS  Google Scholar 

  25. H. Qiang, Z. Xu, J. Mater. Sci. 26, 9063–9066 (2015)

    CAS  Google Scholar 

  26. B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, Z.D. Zhang, Appl. Phys. Lett. 96, 102903 (2010)

    Article  Google Scholar 

  27. J.H. Yoo, W. Gao, K.H. Yoon, J. Mater. Sci. 34, 5361–5369 (1999)

    Article  CAS  Google Scholar 

  28. B. Asbani, Y. Gagou, M. Trcek, J.L. Dellis, M. Amjoud, A. Lahmar, D. Mezzane, Z. Kutnjak, M. El Marssi, J. Alloys Compd. 730, 501–508 (2018)

    Article  CAS  Google Scholar 

  29. G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)

    Article  Google Scholar 

  30. M. Sanlialp, V.V. Shvartsman, M. Acosta, B. Dkhil, D.C. Lupascu, Appl. Phys. Lett. 106, 062901 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (XDJK2015C066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunping Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Qiang, H., Chen, Y. et al. Room-temperature electrocaloric effect in (1−x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field. J Mater Sci: Mater Electron 29, 7227–7232 (2018). https://doi.org/10.1007/s10854-018-8711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8711-2

Navigation