Skip to main content
Log in

Polypyrrole-carbon nanotube-cellophane composite plate with homogeneous network structure for flexible symmetric supercapacitor device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A conceptually simple route has been designed for the preparation of flexible plate by utilization of biodegradable cellophane film through addition of NaHCO3 powder into structure of Polypyrrole-Multiwalled carbon nanotube-Cellophane (PMC) composite and then by chemical treatment in acidic solution. A homogeneous conductive-porous structure was formed as a result of release of NaHCO3 from the composite bulk in acidic solution as well as CO2 (g) evolution. The porous PMC plate exhibited a specific capacitance of 244 mF cm−2 at a current density of 0.5 mA cm−2 and favorite rate capability. The assembled symmetric supercapacitor device showed a high areal capacitance of 309 mF cm−2 at 2.5 mA cm−2, excellent flexibility and a long cycle lifetime (89% capacitance retention after 5000 cycles). The strategy presented in this work opens a new door for environmentally friendly preparation of flexible-biodegradable supercapacitor devices with high mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett. 3, 482 (2018)

    Article  CAS  Google Scholar 

  2. P. Periasamy, T. Krishnakumar, M. Sandhiya, M. Sathish, M. Chavali, P.F. Siril, V.P. Devarajan, J. Mater. Sci.: Mater. Electron. 30, 9231 (2019)

    CAS  Google Scholar 

  3. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 29, 1605336 (2017)

    Article  Google Scholar 

  4. Z. Peng, Y. Zou, S. Xu, ACS Appl. Mater. Interfaces. 10, 22190 (2018)

    Article  CAS  Google Scholar 

  5. X. He, X. Mao, C. Zhang, W. Yang, Y. Zhou, Y. Yang, J. Xu, J. Mater. Sci.: Mater. Electron. 31, 2145 (2020)

    CAS  Google Scholar 

  6. K. Sharma, K. Pareek, R. Rohan, P. Kumar, Int. J. Energy Res. 43, 604 (2019)

    Article  CAS  Google Scholar 

  7. J. Yao, P. Ji, N. Sheng, F. Guan, M. Zhang, B. Wang, S. Chen, H. Wang, Electrochim. Acta 283, 1578 (2018)

    Article  CAS  Google Scholar 

  8. R. Jain, R. Mehrotra, S. Mishra, J. Mater. Sci.: Mater. Electron. 30, 2316 (2019)

    CAS  Google Scholar 

  9. A. Kundu, T.S. Fisher, ACS Appl. Energy Mater. 1, 5800 (2018)

    Article  Google Scholar 

  10. M.P. Kumar, L.M. Lathika, A.P. Mohanachandran, Chem. Sel. 3, 3234 (2018)

    CAS  Google Scholar 

  11. A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atiehfg, J. Power Sources 352, 174 (2017)

    Article  CAS  Google Scholar 

  12. R. Warren, F. Sammoura, K.S. Teh, A. Kozinda, X. Zang, L. Lina, Sens. Actuators A Phys. 231(65), 73 (2015)

    Google Scholar 

  13. Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, W. Maia, J. Power Sources 287, 68 (2015)

    Article  CAS  Google Scholar 

  14. Y. Yesi, I. Shown, A. Ganguly, T.T. Ngo, L.C. Chen, K.H. Chen, ChemSusChem 9, 370 (2016)

    Article  CAS  Google Scholar 

  15. J. Wang, Y. Xu, X. Chen, X. Sun, Compos. Sci. Technol. 67, 2981 (2007)

    Article  CAS  Google Scholar 

  16. Y. Su, I. Zhitomirsky, Appl. Energy 153, 48 (2015)

    Article  CAS  Google Scholar 

  17. Y. Bo, Y. Zhao, Z. Cai, A. Bahi, C. Liu, F. Ko, Cellulose 25, 4079 (2018)

    Article  CAS  Google Scholar 

  18. R. Xu, J. Wei, F. Guo, X. Cui, T. Zhang, H. Zhu, K. Wang, D. Wu, RSC Adv. 5, 22015 (2015)

    Article  CAS  Google Scholar 

  19. S. Huang, P. Chen, W. Lin, S. Lyu, G. Chen, X. Yin, W. Chen, RSC Adv. 6, 13359 (2016)

    Article  CAS  Google Scholar 

  20. J.P. Jyothibasu, D.W. Kuo, R.H. Lee, Cellulose 26, 4495 (2019)

    CAS  Google Scholar 

  21. C.H. Je, K.J. Kim, Sens. Actuators A Phys. 112, 107 (2004)

    CAS  Google Scholar 

  22. H. Li, X. Li, W. Wang, J. Huang, J. Li, S. Huang, B. Fan, W. Song, Sol. Energy 188, 158 (2019)

    CAS  Google Scholar 

  23. H. Zhang, C. Qi, X. Du, H. Zhang, Y. Zhang, T. Ma, Y. Sun, Int. J. Hydrog. Energy 44, 17544 (2019)

    CAS  Google Scholar 

  24. X. Liu, C. Lai, Z. Xiao, S. Zou, K. Liu, Y. Yin, T. Liang, Z. Wu, A.C.S. Appl, Energy Mater. 2, 3185 (2019)

    CAS  Google Scholar 

  25. S. Paul, K.S. Choi, D.J. Lee, P. Sudhagar, Y.S. Kang, Electrochim. Acta 78, 649 (2012)

    CAS  Google Scholar 

  26. J.W. Wang, Y. Chen, B.Z. Chen, J. Alloys Compd. 688, 184 (2016)

    CAS  Google Scholar 

  27. Y. Zhou, Y. Xie, J. Solid State Electron. 22, 2515 (2018)

    Article  CAS  Google Scholar 

  28. P. Avasthi, V. Balakrishnan, Adv. Mater. Interfaces 6, 1801842 (2019)

    Article  Google Scholar 

  29. B. You, N. Li, H. Zhu, ChemSusChem 6, 474 (2013)

    Article  CAS  Google Scholar 

  30. R. Borgohain, J. Li, J.P. Selegue, J. Phys. Chem. C 116, 15068 (2012)

    Article  CAS  Google Scholar 

  31. R. Malik, L. Zhang, C. McConnell, M. Schott, Y.Y. Hsieh, R. Nog, N.T. Alvarez, V. Shanov, Carbon 116, 579 (2017)

    Article  CAS  Google Scholar 

  32. X. Xu, J. Tang, H. Qian, S. Hou, Y. Band, M.S.A. Hossain, L. Pan, Y. Yamauchi, ACS Appl. Mater. Interfaces. 9, 38737 (2017)

    Article  CAS  Google Scholar 

  33. N. Venugopal, W.S. Kim, K.Y. Sohn, Korean J. Chem. Eng. 36, 1536 (2019)

    Article  CAS  Google Scholar 

  34. J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, ACS Appl. Mater. Interfaces. 10, 10851 (2018)

    Article  CAS  Google Scholar 

  35. D. He, J. Niu, M. Dou, J. Ji, Y. Huang, F. Wang, Electrochim. Acta 238, 310 (2017)

    Article  CAS  Google Scholar 

  36. S. Ghosh, W.D. Yong, E.M. Jin, S.R. Polaki, S.M. Jeong, H. Jun, Korean J. Chem. Eng. 36, 312 (2019)

    Article  CAS  Google Scholar 

  37. S. Dhibar, A. Roy, S. Malik, Eur. Polym. 120, 109203 (2019)

    Article  CAS  Google Scholar 

  38. J. Zhou, H. Zhao, X. Mu, J. Chen, P. Zhang, Y. Wang, Y. He, Zh Zhang, X. Pan, E. Xie, Nanoscale 7(35), 14697–14706 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the office of vice chancellor of research of Urmia University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (MP4 456 kb)

Electronic supplementary material 2 (MP4 1442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, M., Rostami, R. Polypyrrole-carbon nanotube-cellophane composite plate with homogeneous network structure for flexible symmetric supercapacitor device. J Mater Sci: Mater Electron 31, 16849–16858 (2020). https://doi.org/10.1007/s10854-020-04241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04241-6

Navigation