Skip to main content
Log in

Evaluation of nanoparticle formation and magnetic properties by boron doping in Ni/NiOδ nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Boron-doped Bx:Ni/NiOδ [x(%) = 0.0, 5.0, 10.0 and 15.0] core/shell magnetic nanoparticles were synthesized by the polyol reduction process. The XRD spectra of the samples indicate that the B addition does not cause any change in the cubic structure of Ni. The TEM photographs present that nanoparticle formation and accumulation orientation occurs in various shapes as spherical, octahedral-like and octopus-like accumulation. The average particle sizes of Bx:Ni/NiOδ MNPs for x(%) = 0.0, 5.0, 10.0, 15.0 were found as ~ 90, 12, 46, 5 nm, respectively, from the TEM images. It is observed from the temperature and magnetic field dependence magnetization measurements that magnetization of Ni/NiOδ core/shell MNPs increases with increasing Boron concentration from 5 to 15%. One can be deduced that this increment in the magnetization comes from the resulting of strengthening the Ni-B ferromagnetic interaction. The highest saturation magnetizations under 1 T magnetic field were found as ~ 37 and ~ 30 emu/g at 10 and 300 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Tsang et al., Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans. Magn. 30(6), 3801–3806 (1994)

    CAS  Google Scholar 

  2. X. Huang, P. Jiang, Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546–554 (2015)

    CAS  Google Scholar 

  3. Y.Z. Chen et al., Tiny Pd@ Co core–shell nanoparticles confined inside a metal–organic framework for highly efficient catalysis. Small 11(1), 71–76 (2015)

    CAS  Google Scholar 

  4. S. Karamipour, M. Sadjadi, N. Farhadyar, Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@ Au core–shell for targeted drug delivery application. Spectrochim. Acta A 148, 146–155 (2015)

    CAS  Google Scholar 

  5. E. Fallahiarezoudar et al., Fabrication (ferrofluid/polyvinyl alcohol) magnetic nanofibers via co-axial electrospinning. J. Dispers. Sci. Technol. 36(1), 28–31 (2015)

    CAS  Google Scholar 

  6. V.C. Ozalp et al., Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal. Chim. Acta 853, 533–540 (2015)

    CAS  Google Scholar 

  7. D. Xiang et al., Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 5(1), 23 (2015)

    Google Scholar 

  8. K. Cho et al., Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5), 1310–1316 (2008)

    CAS  Google Scholar 

  9. A. Habib et al., Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103(7), 07A307 (2008)

    Google Scholar 

  10. Y. Wang et al., Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater. 5(10), 791 (2006)

    CAS  Google Scholar 

  11. N. Chopra, L. Claypoole, L.G. Bachas, Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures. J. Nanoparticle Res. 12(8), 2883–2893 (2010)

    CAS  Google Scholar 

  12. I.S. Lee et al., Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 128(33), 10658–10659 (2006)

    CAS  Google Scholar 

  13. C.R.H. Bahl et al., The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy. J. Phys.: Condens. Matter. 18(17), 4161 (2006)

    CAS  Google Scholar 

  14. A. Rostamnejadi, S. Bagheri, Optical, magnetic, and microwave properties of Ni/NiO nanoparticles. Appl. Phys. A 123(4), 233 (2017)

    Google Scholar 

  15. M.A. Khadar, V. Biju, A. Inoue, Effect of finite size on the magnetization behavior of nanostructured nickel oxide. Mater. Res. Bull. 38(8), 1341–1349 (2003)

    CAS  Google Scholar 

  16. H. Sato et al., Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236(1–2), 27–31 (1993)

    CAS  Google Scholar 

  17. B. Gokul et al., Synthesis of Ni/NiO nanocomposites by hydrothermal-assisted polyol process and their magnetic properties as a function of annealing temperature. Powder Technol. 274, 98–104 (2015)

    CAS  Google Scholar 

  18. D. Peddis et al., Exchange bias in CoFe2O4/NiO nanocomposites. Superlattices Microstruct. 46(1–2), 125–129 (2009)

    CAS  Google Scholar 

  19. V. Nandwana et al., Size and shape control of monodisperse FePt nanoparticles. J. Phys. Chem. C 111(11), 4185–4189 (2007)

    CAS  Google Scholar 

  20. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511), 2115–2117 (2001)

    CAS  Google Scholar 

  21. X. He et al., Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res. Lett. 8(1), 446 (2013)

    Google Scholar 

  22. A. Jafari et al., Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles. J. Magn. Magn. Mater. 379, 305–312 (2015)

    CAS  Google Scholar 

  23. E. Swatsitang et al., Characterization and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 664, 792–797 (2016)

    CAS  Google Scholar 

  24. S. D’Addato et al., Controlled growth of Ni/NiO core–shell nanoparticles: structure, morphology and tuning of magnetic properties. Appl. Surf. Sci. 306, 2–6 (2014)

    Google Scholar 

  25. C.S. Levin et al., Magnetic—plasmonic core–shell nanoparticles. ACS Nano 3(6), 1379–1388 (2009)

    CAS  Google Scholar 

  26. O. Pana et al., Structure, morphology and magnetic properties of Fe–Au core-shell nanoparticles. Surf. Sci. 601(18), 4352–4357 (2007)

    CAS  Google Scholar 

  27. A. Sattar, H. El-Sayed, I. ALsuqia, Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J. Magn. Magn. Mater. 395, 89–96 (2015)

    CAS  Google Scholar 

  28. H. Zeng et al., Tailoring magnetic properties of core/shell nanoparticles. Appl. Phys. Lett. 85(5), 792–794 (2004)

    CAS  Google Scholar 

  29. F. Fiévet, R. Brayner, The polyol process, in Nanomaterials: a danger or a promise?. (Springer, London, 2013), pp. 1–25

    Google Scholar 

  30. Z. Libor, Q. Zhang, The synthesis of nickel nanoparticles with controlled morphology and SiO2/Ni core-shell structures. Mater. Chem. Phys. 114(2–3), 902–907 (2009)

    CAS  Google Scholar 

  31. H. Zeng et al., Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 126(37), 11458–11459 (2004)

    CAS  Google Scholar 

  32. N.R. Jana, Y. Chen, X. Peng, Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16(20), 3931–3935 (2004)

    CAS  Google Scholar 

  33. L. Zhang, R. He, H.-C. Gu, Synthesis and kinetic shape and size evolution of magnetite nanoparticles. Mater. Res. Bull. 41(2), 260–267 (2006)

    CAS  Google Scholar 

  34. D. Mott et al., Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23(10), 5740–5745 (2007)

    CAS  Google Scholar 

  35. K. Okitsu, K. Sharyo, R. Nishimura, One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25(14), 7786–7790 (2009)

    CAS  Google Scholar 

  36. L. Bai et al., Shape-controlled synthesis of Ni particles via polyol reduction. J. Cryst. Growth 311(8), 2474–2479 (2009)

    CAS  Google Scholar 

  37. Y. Sui et al., Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism. Cryst. Growth Des. 10(1), 99–108 (2009)

    Google Scholar 

  38. W. Shen et al., Growth mechanism of octahedral like nickel ferrite crystals prepared by modified hydrothermal method and morphology dependent magnetic performance. Ceram. Int. 44(8), 9809–9815 (2018)

    CAS  Google Scholar 

  39. S.H. Masunaga et al., Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements. Phys. Rev. B 80(18), 184428 (2009)

    Google Scholar 

  40. J. Vargas et al., Effect of dipolar interaction observed in iron-based nanoparticles. Phys. Rev. B 72(18), 184428 (2005)

    Google Scholar 

  41. J. Dormann, D. Fiorani, E. Tronc, On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J. Magn. Magn. Mater. 202(1), 251–267 (1999)

    CAS  Google Scholar 

  42. P. Allia et al., Magnetic hysteresis based on dipolar interactions in granular magnetic systems. Phys. Rev. B 60(17), 12207 (1999)

    CAS  Google Scholar 

  43. X.-C. Sun, X.-L. Dong, Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater. Res. Bull. 37(5), 991–1004 (2002)

    CAS  Google Scholar 

  44. D. Kechrakos, K. Trohidou, Magnetic properties of dipolar interacting single-domain particles. Phys. Rev. B 58(18), 12169 (1998)

    CAS  Google Scholar 

  45. İ Adanur, M. Akyol, A. Ekicibil, Effect of reducing agent and surfactant on the morphology, structural and magnetic properties of Ni magnetic nanoparticles. Philos. Mag. Lett. 98(8), 319–329 (2018)

    CAS  Google Scholar 

  46. X. Zhao et al., Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res. 3(3), 200–210 (2010)

    CAS  Google Scholar 

  47. A. El-Gendy et al., The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47(12), 2821–2828 (2009)

    CAS  Google Scholar 

  48. P. Joy, P.A. Kumar, S. Date, The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. 10(48), 11049 (1998)

    CAS  Google Scholar 

  49. P.A. Kumar, P. Joy, S. Date, Comparison of the low Comparison of the low field magnetic behavior of Ln0.7Ca0.12 3MnO3 (Ln= La, Pr). Solid State Commun. 108(2), 67–70 (1998)

    CAS  Google Scholar 

  50. T. Torres et al., Validity of the Néel-Arrhenius model for highly anisotropic CoxFe3–xO4 nanoparticles. J. Appl. Phys. 118(18), 183902 (2015)

    Google Scholar 

  51. M. Rajendran et al., Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232(1–2), 71–83 (2001)

    CAS  Google Scholar 

  52. M. Akyol et al., Effect of boron content on structure and magnetic properties in CoFe2O4 spinel nanocrystals. J. Alloys Compd. 744, 528–534 (2018)

    CAS  Google Scholar 

  53. M. Ma et al., Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268(1–2), 33–39 (2004)

    CAS  Google Scholar 

  54. S. Majetich et al., Magnetic nanoparticles and magnetocrystalline anisotropy. Nanostruct. Mater. 9(1–8), 291–300 (1997)

    CAS  Google Scholar 

  55. C. Cannas et al., CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study. Chem. Mater. 22(11), 3353–3361 (2010)

    CAS  Google Scholar 

  56. L. Yu et al., Size-controlled Ni nanocrystal growth on peptide nanotubes and their magnetic properties. Adv. Mater. 16(8), 709–712 (2004)

    CAS  Google Scholar 

  57. J.-H. Hwang et al., Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12(4), 1076–1082 (1997)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Çukurova University (Adana/Turkey) under the Project Nos. of FYL-2017-7998 and FDK-2019-11498.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Akyol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adanur, İ., Akyol, M., Tezcan, F. et al. Evaluation of nanoparticle formation and magnetic properties by boron doping in Ni/NiOδ nanoparticles. J Mater Sci: Mater Electron 31, 14591–14600 (2020). https://doi.org/10.1007/s10854-020-04020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04020-3

Navigation