Skip to main content
Log in

Structural characterization of pure and magnetic-doped Bi2Se3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles made of “pure” and Ni-“doped” Bi2Se3 prototype topological insulators were successfully prepared using the chemical hot-injection method. In both cases, the reaction is kept for a relatively long period, where samples are taken from the reaction flask at successive time steps. High resolution transmission electron microscopy revealed significant morphology differences for the pure and Ni-doped samples at all reaction times. The pure Bi2Se3 samples exhibit spiral-like shapes turning into large sheets with wires-like features at very long reaction times, whereas the Ni-doped samples evolve, with the reaction time, from highly spherical, partially elongated, and finally well-defined nanorods. In addition, Co-doped Bi2Se3 samples, prepared under the same conditions, exhibit large non-uniform flakes at long reaction time. The crystallinity of all pure and magnetic-doped samples was ensured from electron diffraction, and quantitatively obtained from X-ray diffraction measurements. The latter justified the same rhombohedral crystal structure for both the pure and magnetically doped samples, and the absence of other phases. The energy dispersive X-ray spectroscopy was used to quantify the present elements, where the Bi, Se, Ni, and Co peaks were identified. The present study provides a way for tuning the nanoparticles size/morphology of Bi2Se3 and related-compounds by the slight addition of magnetic dopants, which subsequently allows the engineering of various Bi2Se3-based nanoarchitectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.P. Feynman, Eng. Sci. 23, 22 (1960)

    Google Scholar 

  2. X. Huanga, M.A. El-Sayed, J. Adv. Res. 1, 13 (2010)

    Article  Google Scholar 

  3. T. Huang, X-H.N. Xu, J. Mater. Chem. 20, 9867 (2010)

    Article  Google Scholar 

  4. V. Biju, T. Itoh, A. Anas, A. Sujith, M. Ishikawa, Anal. Bioanal. Chem. 391, 2469 (2008)

    Article  Google Scholar 

  5. J.N. Freitas, A.S. Gonçalves, F. Nogueira, Nanoscale 6, 6371 (2014)

    Article  Google Scholar 

  6. Kh. Abdulwahab, M.A. Malik, P. O’Brien, K. Govender, Ch.A. Muryn, G.A. Timco, F. Tuna, R.E.P. Winpenny, Dalton Trans. 42, 196 (2013)

    Article  Google Scholar 

  7. M.M. El-Okr, M.A. Salem, M.S. Salim, R.M. El-Okr, M. Ashoush, H.M. Talaat, J. Magn. Magn. Mater. 323, 920 (2011)

    Article  Google Scholar 

  8. G. Schmid, Nanoparticles: From Theory to Application, 2nd edn. (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  9. Sh. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Phys. Chem. Chem. Phys. 13, 10652 (2011)

    Article  Google Scholar 

  10. B.R. Cuenya, Thin Solid Films 518, 3127 (2010)

    Article  Google Scholar 

  11. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460(7259), 1101 (2009)

    Article  Google Scholar 

  12. H. Zhang, Ch-X. Liu, X.-L. Qi, X. Dai, Z. Fang, Sh.-Ch. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  13. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  Google Scholar 

  14. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  Google Scholar 

  15. L. Fu, C.L. Kane, Phys. Rev. Lett. 100(9), 096407 (2008)

    Article  Google Scholar 

  16. F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang, Zh.. Chen, J. Zou, A. Shailos, K.L. Wang, Nat. Nanotechnol. 6, 216 (2011)

    Article  Google Scholar 

  17. Q.-K. Xue, Nat. Nanotechnol. 6, 197 (2011)

    Article  Google Scholar 

  18. M. Bianchi, R.C. Hatch, J. Mi, B.B. Iversen, Ph. Hofmann, Phys. Rev. Lett. 107, 086802 (2011)

    Article  Google Scholar 

  19. M. Bianchi, R.C. Hatch, Z. Li, Ph. Hofmann, F. Song, J.i. Mi, B.B. Iversen, Z.M. Abd El-Fattah, P. Loptien, L. Zhou, A.A. Khajetoorians, J. Wiebe, R. Wiesendanger, J.W. Wells, ACS Nano 6, 7009 (2012)

    Article  Google Scholar 

  20. L.A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A.V. Fedorov, Y.S. Hor, R.J. Cava, A. Bansil, H. Lin, M.Z. Hasan, Nat. Phys. 7, 32 (2011)

    Article  Google Scholar 

  21. Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong, R.J. Cava, Phys. Rev. Lett. 104, 057001 (2010)

    Article  Google Scholar 

  22. D. Koumoulis, B. Leung, Th..C. Chasapis, R. Taylor, D. King Jr., M.G. Kanatzidis, L.-S. Bouchard, Adv. Funct. Mater. 24, 1519 (2013)

    Article  Google Scholar 

  23. Sh. Xu, W. Zhao, J.-M. Hong, J.-J. Zhu, H.-Y. Chen, Mater. Lett. 59, 319 (2005)

    Article  Google Scholar 

  24. K. Kade, L. Kumar, W. Li, J.Y. Huang, P.P. Provencio, Nanoscale Res. Lett. 6, 57 (2011)

    Google Scholar 

  25. X.-F. Qiu, J.-J. Zhu, L. Pu, Y. Shi, Y.-D. Zheng, H.-Y. Chen, Inorg. Chem. Comm. 7, 319 (2004)

    Article  Google Scholar 

  26. X. Liu, J. Xu, Z. Fang, L. Lin, Y. Qian, Y. Wang, C. Ye, C. Ma, J. Zeng, Nano Res. https://doi.org/10.1007/s12274-015-0861-4

  27. K.F. Cai, L. Wang, J.L. Yin, C.W. Zhou, Open Crystallogr. J. 1, 14 (2008)

    Article  Google Scholar 

  28. D. Kong, J.C. Rande, H. Peng, J.J. Cha, S. Meister, K. Lai, Y. Chen, Zh-X. Shen, H.C. Manoharan, Y. Cui, Nano Lett. 10(1), 329 (2010)

    Article  Google Scholar 

  29. Y. Yan, Z.-M. Liao, Y.-B. Zhou, H.-Ch. Wu, Y.-Q. Bie, J.-J. Chen, J. Meng, X.-S. Wu, D.-P. Yu, Sci. Rep. 3, 1264 (2013)

    Article  Google Scholar 

  30. M.A. Ashoush, M.M. El-Okr, Z.M. Abd El-Fattah, J. Mater. Sci.: Mater. Electron. 28, 3659 (2017)

    Google Scholar 

  31. Y. Min, G.D. Moon, B.S. Kim, B. Lim, J.-S. Kim, Ch.Y. Kang, U. Jeong, J. Am. Chem. Soc. 134, 2872 (2012)

    Article  Google Scholar 

  32. A. Zhuang, Y. Zhao, X. Liu, M. Xu, Y. Wang, U. Jeong, X. Wang, J. Zeng, Nano Res. 8(1), 246 (2015)

    Article  Google Scholar 

  33. R.K. Sharma, G. Kedarnath, V.K. Jain, A. Wadawale, M. Nalliath, C.G.S. Pillai, B. Vishwanadh, Dalton Trans. 39, 8779 (2010)

    Article  Google Scholar 

  34. M.A. Marzouk, Sh.M. Abo-Naf, H.A. Zayed, N.S. Hassan, J. Mater. Res. Technol. 5, 226 (2016)

    Article  Google Scholar 

  35. A.S. Ahmed, Sh.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, J. Lumin. 131, 1 (2011)

    Article  Google Scholar 

  36. C.M. Muiva, Ch. Moditswe, T.S. Sathiaraj, ISRN Ceram. 2012, 1 (2012)

    Article  Google Scholar 

  37. L.D. Alegria, M.D. Schroer, A. Chatterjee, G.R. Poirier, M. Pretko, S.K. Patel, J.R. Petta, Nano Lett. 12, 4711 (2012)

    Article  Google Scholar 

  38. C.N.R. Rao, A. Muller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications. (Wiley, Weinheim, 2004)

    Book  Google Scholar 

  39. H. Liu, B. Zhang, H. Shi, Y. Tang, Kui Jiao, X. Fu, J. Mater. Chem. 18, 2573 (2008)

    Article  Google Scholar 

  40. J. Joy Jeba Vijila, K. Mohanraj, J. Henr, G. Sivakumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 457 (2016)

    Article  Google Scholar 

  41. Match!, Phase Identification from Powder Diffraction, Software for Scientists

  42. B. Das, S. Sarkar, R. Khan, S. Santra, N.S. Das, K.K. Chattopadhyay, RSC Adv. 6, 25900 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Centre for Special Studies and Programs (BA/CSSP) through the 2013 research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Abd El-Fattah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Fattah, Z.M., Ashoush, M.A. Structural characterization of pure and magnetic-doped Bi2Se3 nanoparticles. J Mater Sci: Mater Electron 29, 2593–2599 (2018). https://doi.org/10.1007/s10854-017-8183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8183-9

Navigation