Skip to main content
Log in

Heavy metal oxide glass responses for white light emission

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth-doped heavy metal oxide glasses (HMOG) have attracted much interest due to their wide range of applications in the field of optoelectronic devices. The current study focuses on the preparation of undoped and Dy2O3-doped heavy metal oxide glass that is mainly based on non-conventional glass formers PbO and Bi2O3 together with TeO2 and B2O3 glass forming oxides. The amorphous nature of the obtained glasses were confirmed by x-ray diffraction (XRD) measurements. The glasses were evaluated through optical absorption in ultraviolet–visible and near-infrared (UV–VIS–NIR) regions, photoluminescence, Fourier transform infrared (FTIR), and density measurements. The absorption spectra of undoped glass revealed a characteristic recorded peaks located in the UV and Near-Vis region while extended peaks in the visible and Near-IR region were detected after Dy2O3 additions. The luminescence spectra revealed a characteristic blue, yellow, and red emissions with a very weak emission in NIR region. The chromaticity coordinates (CIE) were evaluated from the emission spectra and revealed the suitability of HMOG for white light-emitting diode (LED) applications. The measured density and the calculated optical parameters (Eopt, ∆E, and n) were correlated with the rare-earth ion concentration. The structural building units of HMOG network were investigated via the FTIR technique. The characteristic vibrational modes of FTIR were observed due to the contribution of PbO4 and BiO6 as a forming building units besides BO4, BO3, and TeO3 units with no extended effect on the vibrational modes after the minor additions of Dy2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Stambouli, H. Elhouichet, C. Barthou, M. Férid, Energy transfer induced photoluminescence improvement in Er3+/Ce3+/Yb3+ tri-doped tellurite glass. J. Alloy. Comp. 580, 310–315 (2013)

    CAS  Google Scholar 

  2. L. Lu, Q. Nie, T. Xu, S. Dai, X. Shen, X. Zhang, Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses. J. Lumin. 126, 677–681 (2007)

    CAS  Google Scholar 

  3. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60–71 (2019)

    CAS  Google Scholar 

  4. Y.A. Lakshmi, K. Swapna, K.S.R.K. Reddy, M. Venkateswarlu, S. Mahamuda, A.S. Rao, Structural, Optical and NIR studies of Er3+ ions doped bismuth borotellurite glasses for luminescence materials applications. J. Lumin. 211, 39–47 (2019)

    Google Scholar 

  5. K.A. Naseer, S. Arunkumar, K. Marimuthu, The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth barium telluroborate glasses for display devices and 1.53 μm amplification. J. Non-Cryst. Solids 520, 119463 (2019)

    CAS  Google Scholar 

  6. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    CAS  Google Scholar 

  7. P. Babu, H.J. Seo, K.H. Jang, K.U. Kumar, C.K. Jayasankar, 1.55 μm emission and upconversion properties of Er3+-doped oxyflurotellurite glasses. Chem. Phys. Lett. 445, 162–166 (2007)

    CAS  Google Scholar 

  8. Z. Yang, S. Xu, J. Yang, L. Hu, Z. Jiang, Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead–germanium–tellurite glasses. J. Mater. Res. 19, 1630–1637 (2004)

    CAS  Google Scholar 

  9. C. LaxmiKanth, B.V. Raghavaiah, B. Appa Rao, N. Veeraiah, Optical absorption, fluorescence and thermo luminescence properties of ZnF2–MO–TeO2 (MO=ZnO, CdO and PbO) glasses doped with Er3+ ions. J. Lumin. 109, 193–205 (2004)

    CAS  Google Scholar 

  10. A. Miguel, M.A. Arriandiaga, R. Morea, J. Fernandez, J. Gonzalo, R. Balda, Effect of   Tm3+ co doping on the near-infrared and up conversion emissions of Er3+ in TeO2–ZnO–ZnF2 glasses. J. Lumin. 154, 136–141 (2014)

    CAS  Google Scholar 

  11. S.B. Kolavekar, N.H. Ayachit, Synthesis of praseodymium trioxide doped lead-boro- tellurite glasses and their optical and physical properties. J. Materiomics 5(3), 455–462 (2019)

    Google Scholar 

  12. L. Vijayalakshmi, K.N. Kumar, K. Srinivasa Rao, P. Hwang, Bright upconversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications. J. Mol. Struct. 1155, 394–402 (2018)

    CAS  Google Scholar 

  13. C. Krảnkel, D.T. Marzahl, F. Moglia, G. Huber, P.W. Metz, Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev. 10, 548–568 (2016)

    Google Scholar 

  14. L. Sun, B. Devakuma, J. Liang, S. Wang, Q. Sun, Xiaoyong Huang, Highly efficient Ce3+–Tb3+ energy transfer induced bright narrowband green emissions from garnet-type Ca2YZr2(AlO4)3:Ce3+, Tb3+ phosphors for white LEDs with high color rendering index. J. Mater. Chem. C 7, 10471 (2019)

    CAS  Google Scholar 

  15. L. Sun, B. Devakumar, J. Liang, S. Wang, Q. Sun, X. Huang, A broadband cyan-emitting Ca2LuZr2(AlO4)3:Ce3+ garnet phosphor for near-ultraviolet-pumped warm-white light-emitting diodes with an improved color rendering index. J. Mater. Chem. C 8, 1095 (2020)

    CAS  Google Scholar 

  16. Q. Sun, S. Wang, L. Sun, J. Liang, B. Devakumar, X. Huang, Achieving full-visible-spectrum LED lighting via employing an efficient Ce3+-activated cyan phosphor. Mater. Today Energy 17, 100448 (2020)

    Google Scholar 

  17. V. Hegde, C.S.D. Viswanath, K.K. Mahato, S.D. Kamath, Warm white light and colour tunable characteristics of Dy3+ co-doped with Eu3+ and Pr+3 zinc sodium bismuth borate glasses for solid state lighting applications. Mater. Chem. Phys. 234, 369–377 (2019)

    CAS  Google Scholar 

  18. M.A. Marzouk, A.M. Fayad, H.A. ElBatal, Correlation between luminescence an crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications. J. Mater. Sci. 28, 13101–13111 (2017)

    CAS  Google Scholar 

  19. L. Yuliantini, E. Kaewnuam, R. Hidayat, M. Djamal, K. Boonin, P. Yasaka, C. Wongdeeying, N. Kiwsakunkran, J. Kaewkhao, Yellow and blue emission from BaO–(ZnO/ZnF2)–B2O3–TeO2 glasses doped with Dy3+ for laser medium and scintillation material applications. Opt. Mater. 85, 382–390 (2018)

    CAS  Google Scholar 

  20. L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratnam, K. Jang, A.S. Rao, R.K. Sinha, White light emission and color tenability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121–127 (2016)

    CAS  Google Scholar 

  21. M.A. Marzouk, N.A. Ghoneim, Gamma irradiation and crystallization effects on the photoluminescence properties of soda lime fluorophosphates host glass activated with Ce4+, Dy3+ or Pr3+ ions. Radiat. Phys. Chem. 174, 108893 (2020)

    CAS  Google Scholar 

  22. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Clarendon press, Oxford, 1979)

    Google Scholar 

  23. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  24. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    CAS  Google Scholar 

  25. D. Malacara, Color vision and colorimetry; theory and applications, 2nd edn. (SPIE Press, Bellingham, 2011)

    Google Scholar 

  26. R.J. Mortimer, T.S. Varley, Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 32, 35–44 (2011)

    CAS  Google Scholar 

  27. J.E. Shelby, Introduction to glass science and technology, 2nd edn. (The Royal Society of Chemistry, Cambridge, 2005)

    Google Scholar 

  28. J.A. Duffy, Charge transfer spectra of metal ions in glass. Phys. Chem. Glasses 38, 289–292 (1997)

    CAS  Google Scholar 

  29. D. Möncke, D. Ehrt, Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants. Opt. Mater. 25, 425–437 (2004)

    Google Scholar 

  30. D. Möncke, Photo-ionization of 3d—ions in fluoride—phosphate glasses. Int. J. Appl. Glass Sci. 6(3), 249–267 (2015)

    Google Scholar 

  31. M.A. Marzouk, F.H. ElBatal, K.M. ElBadry, H.A. ElBatal, Optical, structural and  thermal properties of sodium metaphosphate glasses containing Bi2O3 with interactions of gamma rays. Spectrochim. Acta A 171, 454–460 (2017)

    CAS  Google Scholar 

  32. N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, J. Li, Effect of Si doping on near-infrared emission and energy transfer of Bismuth in silicate glasses. J. Non-Cryst. Solids 358, 261–264 (2012)

    CAS  Google Scholar 

  33. S.M. Abo-Naf, R.L. Elwan, M.A. Marzouk, Structure–property correlations in the SiO2–PbO–Bi2O3 glasses. J. Mater. Sci. 23, 1022–1030 (2012)

    CAS  Google Scholar 

  34. M.A. Marzouk, A.M. Fayad, Optical characterization of heavy metal non-conventional Binary PbO–ZnO glasses. Appl. Phys. A 116, 359–364 (2014)

    CAS  Google Scholar 

  35. H. Ming, H.M. Kamari, W.M.D.W. Yusoff, Optical properties of bismuth tellurite based glass. Int. J. Mol. Sci. 13, 4623–4631 (2012)

    Google Scholar 

  36. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, K. Goswami, Characterization of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements. J. Non-Cryst. Solids 320, 195–209 (2003)

    CAS  Google Scholar 

  37. I. Fanderlik, Glass science and technology 5: optical properties of glasses (Elsevier, Amsterdam, 1983)

    Google Scholar 

  38. J.N. Ayuni, M.K. Halimah, Z.A. Talib, H.A.A. Sidek, W.M. Daud, A.W. Zaidan, A.M. Khamirul, Optical properties of ternary TeO2-B2O3-ZnO glass system. Mater. Sci. Eng. 17, 012027 (2011)

    Google Scholar 

  39. Y.L.P. Reddy, M. Waaiz, S.N. Ahmed, C.V.K. Reddy, Optical properties of dysprosium (Dy3+) doped fluoroborate glasses. Int. J. Innov. Sci. Eng. Technol. 4(7), 1–5 (2017)

    Google Scholar 

  40. L. Żur, J. Pisarska, W.A. Pisarski, Influence of heavy metal oxide and activator concentration on spectroscopic properties of Eu3+, Dy3+ and Tb3+ ions in lead borate glasses. Opt. Appl. XLII(2), 345–352 (2012)

    Google Scholar 

  41. S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Férid, Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4. J. Lumin. 166, 82–87 (2015)

    CAS  Google Scholar 

  42.  T.Q. Leow, R. Hussin, Z. Ibrahim, K. Deraman, W.N.W. Shamsuri, H.O. Lintang, Eu and Dy co-activated SrB2Si2OBlue emitting phosphor: Synthesis and luminescence characteristics. Sains Malays. 44(5), 753–760 (2015)

    CAS  Google Scholar 

  43. S. Babu, V. Reddy Prasad, D. Rajesh, Y.C. Ratnakaram, Luminescence properties of Dy3+ doped different fluoro-phosphate glasses for solid state lighting applications. J. Mol. Struct. 1080, 153–161 (2015)

    CAS  Google Scholar 

  44. N. Vijaya, K.U. Kumar, C.K. Jayasankar, Dy3+-doped zinc fluorophosphates glasses for white luminescence applications. Spectrochim. Acta, Part A 113, 145–153 (2013)

    CAS  Google Scholar 

  45. K.V. Rao, S. Babu, G. Venkataiah, Y.C. Ratnakaram, Optical spectroscopy of Dy3+ doped borate glasses for luminescence applications. J. Mol. Struct. 1094, 274–280 (2015)

    Google Scholar 

  46. Z.Z. Zhang, Z.P. Wei, Y.M. Lu, D.Z. Shen, B. Yao, B.H. Li, D.X. Zhao, J.Y. Zhang, X.W. Fan, Z.K. Tang, p-Type ZnO on sapphire by using O2–N2 co-activating and fabrication of ZnO LED. J. Cryst. Growth 301–302, 362–365 (2007)

    Google Scholar 

  47. U. Fawad, H.J. Kim, A. Khan, H. Park, S. Kim, X-ray and photoluminescence study of Li6Gd(BO3)3:Tb3+, Dy3+ phosphors. Sci. Adv. Mater. 7(12), 2536–2544 (2015)

    CAS  Google Scholar 

  48. M.A. Ouis, M.A. Marzouk, Comparative optical, FTIR and photoluminescence spectral analysis of copper ions in BaO–B2O3, SrO– B2O3 or Bi2O3– B2O3 glasses and impact of gamma irradiation. J. Lumin. 223, 117242 (2020)

    CAS  Google Scholar 

  49. S.P. Singh, R.P.S. Chakradhar, J.L. Rao, B. Karmakar, EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO–Bi2O3–B2O3 glasses. J. Alloys Compd. 493, 256–262 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fayad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, M.A., Fayad, A.M. Heavy metal oxide glass responses for white light emission. J Mater Sci: Mater Electron 31, 14502–14511 (2020). https://doi.org/10.1007/s10854-020-04010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04010-5

Keywords

Navigation