Skip to main content
Log in

Optical and reliability properties studies of Sr4Al14O25:Eu2+ film for high-CRI white LEDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study is aimed at obtaining a relatively higher-color-rendering index (CRI) white LED using a blue-emitting Sr4Al14O25:Eu2+ phosphor that could smooth out LED flicker. In order to study the luminescence of the phosphors in the LED package, a thin Sr4Al14O25:Eu2+ film and three-phosphors-containing (green YAG:Ce3+, red CASN:Eu2+, and indigo Sr4Al14O25:Eu2+) film were prepared using a spin coating method. Meanwhile, three-phosphors-LED package was fabricated using a dispensing process, whereby the chip surface was automatically leveled to form a film with the same composition and components as that of the three-phosphors-containing film. In order to study the reliability of Sr4Al14O25:Eu2+ phosphors in the resin, high-temperature and high-humidity test, Xenon lamp aging test, and thermal cycling test were carried out. The Sr4Al14O25:Eu2+ phosphors in the resin were also characterized through photoluminescence (PL) and PL decay curve analyses. The electroluminescence, correlated color temperature, and temperature-dependent PL of the three-phosphors-containing film were measured using an integrating sphere. The three-phosphors-containing film displayed high reliability and thermal stability. The blue LED was coated with a three-phosphors-containing film, which led to a correlated color temperature of ~ 4500 K and a high CRI (Ra > 90.2).This LED package had an afterglow light that could eliminate the observed LED flicker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Gil-De-Castro, S.K. RÖnnberg, M.H.J. Bollen, Light intensity variation (flicker) and harmonic emission related to LED lamps. Electr. Power Syst. Res. 146, 107–114 (2017)

    Article  Google Scholar 

  2. J. Drapela, R. Langella, J. Slezingr et al., Generalized lamp model for light flicker studies. Electr. Power Syst. Res. 154, 413–422 (2018)

    Article  Google Scholar 

  3. A. J. Wilkins, J. A. Veitch, B. Lehman, LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, IEEE, (2010)

  4. Z. Wu et al., Comparative investigation on synthesis and luminescence of Sr4Al14O25:Eu2+ applied in InGaN LEDs. J. Alloy Compnd. (2008). https://doi.org/10.1016/j.jallcom.2007.03.139

    Article  Google Scholar 

  5. G. Blasse, Luminescent materials. Chem. Mater. 1(3), 294 (1989)

    Article  CAS  Google Scholar 

  6. H.N. Luitel, T. Watari, T. Torikai, M. Yada, R. Chand, C.N. Xu et al., Highly water resistant surface coating by fluoride on long persistent Sr4Al14O25:Eu2+/Dy3+ phosphor. Appl. Surf. Sci. 256(8), 2347–2352 (2010)

    Article  CAS  Google Scholar 

  7. Y. Zhu, M. Zheng, J. Zeng et al., Luminescence enhancing encapsulation for strontium aluminate phosphors with phosphate. Mater. Chem. Phys. 113(2–3), 721–726 (2009)

    Article  CAS  Google Scholar 

  8. C. Guo, L. Luan, D. Huang et al., Study on the stability of phosphor SrAl2O4:Eu2+, Dy3+ in water and method to improve its moisture resistance. Mater. Chem. Phys. 106(2–3), 268–272 (2007)

    Article  CAS  Google Scholar 

  9. L. Yiming, J. Zho et al., Effect of phosphor composition and packaging structure of flexible phosphor films on performance of white LEDs. J. Mater. Sci. 29, 18476–18485 (2018)

    Google Scholar 

  10. Y. Kim, K.B. Shim, M. Wu, H.K. Jung, Monodispersed spherical YAG: Ce3+ phosphor particles by one-pot synthesis. J. Alloy. Compd. 693, 40–47 (2017)

    Article  CAS  Google Scholar 

  11. Y. Zhao, X. Zhang, D. Yan, G. Zhu, C. Liang, X. Yang, A. Yu, Optical performances of mono-dispersed spherical YAG: Ce3+ Nano-phosphor achieved by one-pot synthesis. J. Am. Ceram. Soc. 101(5), 1801–1805 (2018)

    Article  CAS  Google Scholar 

  12. S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, R.J. Xie, CaAlSiN3: Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting. J. Mater. Chem. C 4(35), 8197–8205 (2016)

    Article  CAS  Google Scholar 

  13. Q.U.E. Meidan, Q.U.E. Wenxiu, Z. Ting et al., Enhanced photoluminescence property of sulfate ions modified YAG: Ce3+ phosphor by co-precipitation method. Rare Earths. 35, 217–222 (2017)

    Article  Google Scholar 

  14. K. Yamada, Y. Imai, K. Ishii, Optical simulation of light source devices composed of blue LEDs and YAG phosphor. Light Visual Environ. 27, 70–74 (2003)

    Article  Google Scholar 

  15. P.G. Nutting, The luminous equivalent of radiation. Phys. Rev 24, 202–213 (1907)

    Google Scholar 

  16. G.H. Li, J.J. Chen, Z.Y. Mao, W.W. Song, T. Sun, D.J. Wang, Atmospheric pressure preparation of red-emitting CaAlSiN3: Eu2+ phosphors with variable fluxes and their photoluminescence properties. Ceram. Int. 42, 1756–1761 (2016)

    Article  CAS  Google Scholar 

  17. J. Zou, B. Yang, X. Qian, F. Wang, S. Zhu, J. Li, Effect of al/ga substitution on photoluminescence and chromatic properties of Y3Al5-xGaxO12:Ce3+ phosphor. J. Mater. Sci. 27(8), 8074–8079 (2016)

    CAS  Google Scholar 

  18. L. Qun, Z. Junwu, S. Feilong, Energy transfer mechanism of Sr4Al14O25:Eu25 phosphor. J. Rare Earths 28(1), 26–29 (2010)

    Article  Google Scholar 

  19. M. Misevicius, K. Jonikavicius, J.-E. Jørgensen, V. Balevicius, Effect of partial substitution of Ca for Sr on crystal structure and luminescence of Ce-doped Sr4Al14O25. J. Solid State Chem. 274, 116–123 (2019)

    Article  CAS  Google Scholar 

  20. Y. Zhu, M. Ge, Effect of y/x ratio on luminescence properties of xSrO·yAl2O3:Eu2+, Dy3+ luminous fiber. J. Rare Earths 32(7), 598–602 (2014)

    Article  CAS  Google Scholar 

  21. N. Suriyamurthy, B.S. Panigrahi, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25:Eu2+, Dy3+ phosphor. J. Lumin. 128(11), 1809–1814 (2008)

    Article  CAS  Google Scholar 

  22. D. Zhang, M. Shi, Y. Sun et al., Long afterglow property of Er3+ doped Ca2SnO4 phosphor. J. Alloy. Compd. 667, 235–239 (2016)

    Article  CAS  Google Scholar 

  23. H. Yu, D. Deng, L. Chen et al., Luminescent properties of novel Ca2.89Mg0.11(PO4)2:Eu2+ single-phase white light-emitting phosphor for white LEDs. Ceram. Int. 41(3), 3800–3805 (2015)

    Article  CAS  Google Scholar 

  24. M. Wu, D. Deng, F. Ruan, B. Chen, Double-site emission of Eu2+ ions in Sr4Al14O25: Eu2+ phosphors for self-calibrated. Opt. Thermometry 88, 704–710 (2019)

    CAS  Google Scholar 

  25. T. Jiang, H. Wang, M. Xing et al., Luminescence decay evaluation of long-afterglow phosphors. Phys. B 450, 94–98 (2014)

    Article  CAS  Google Scholar 

  26. D. Dutczak, T. Jüstel, C. Ronda et al., Eu2+ luminescence in strontium aluminates. Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015)

    Article  CAS  Google Scholar 

  27. J. Jia, A.Q. Zhang, D.X. Li, X.G. Liu, B.S. Xu, H.S. Jia, Preparation and properties of the flexible remote phosphor film for blue chip-based white LED. Mater. Des. 102, 8–13 (2016)

    Article  CAS  Google Scholar 

  28. M.A. El-Rahman, K.M. Yassien, A.A.M. Yassene, Effect of gamma irradiation on the optical properties of epoxy resin thin films. Optik Int. J. Light Electron Opt. 183, 962 (2019)

    Article  Google Scholar 

  29. E. Kim, S. Unithrattil, I.S. Sohn, S.J. Kim, W.J. Chung, W.B. Im, Facile one-step fabrication of 2-layered and 4-quadrant type phosphor-in-glass plates for white LEDs: an insight into angle dependent luminescence. Opt. Mater. Express 6, 804–814 (2016)

    Article  CAS  Google Scholar 

  30. J. Ueda, S. Tanabe, K. Takahashi, T. Takeda, N. Hirosaki, Thermal quenching mechanism of CaAlSiN3: Eu2+ red phosphor. Bull. Chem. Soc. Jpn. 91(2), 173–177 (2017)

    Article  Google Scholar 

  31. Y.M. Liu, J. Zou, B.B. Yang, W.B. Li, M.M. Shi, Y. Han, Z.M. Wang, N. Jiang, Preparation and reliability of flexible phosphor film for warm white LED. Mater. Technol. 33, 22–28 (2017)

    Article  Google Scholar 

  32. Y. Ma, J. Sun, X. Luo, Multi-wavelength phosphor model based on fluorescent radiative transfer equation considering re-absorption effect. J. Lumin. 209, 109–115 (2019)

    Article  CAS  Google Scholar 

  33. G.B. Nair, S.J. Dhoble, Assessment of electron-vibrational interaction (EVI) parameters of YAG: Ce3+, TAG: Ce3+ and LuAG: Ce3+ garnet phosphors by spectrum fitting method. Spectrochim. Acta Part A 173, 822–826 (2017)

    Article  CAS  Google Scholar 

  34. I. Pricha, W. Rossner, R. Moos, Layered ceramic phosphors based on CaAlSiN3: Eu and YAG: Ce for white light-emitting diodes. J. Am. Ceram. Soc. 99(1), 211–217 (2015)

    Article  Google Scholar 

  35. L. Chen, M. Fei, Z. Zhang, Y. Jiang, S. Chen, Y. Dong, C. Li, Understanding the local and electronic structures toward enhanced thermal stable luminescence of CaAlSiN3:Eu2+. Chem. Mater. 28(15), 5505–5515 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61901270), the Shanghai Sailing Program (17YF1419200), and the Science and Technology Planning Project of Zhejiang Province, China (2018C01046)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojiang Shang or Jun Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, W., Shang, Z. et al. Optical and reliability properties studies of Sr4Al14O25:Eu2+ film for high-CRI white LEDs. J Mater Sci: Mater Electron 31, 13561–13569 (2020). https://doi.org/10.1007/s10854-020-03912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03912-8

Navigation