Skip to main content
Log in

Photoelectrochemical characterization of ITO/TiO2 electrodes obtained by cathodic electrodeposition from aqueous solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the photoelectrochemical characterization of ITO/TiO2 electrodes electrosynthesized at two distinct TiO2 film charges (0.35 and 1.00 C) was performed. Scanning electron microscopy presented a globular-like nanostructure and a typical morphology that are dependent on the growing charge, where the photoelectrode synthesized at 0.35 C presented a more homogeneous morphology. Such dependence was also observed at the photoelectrochemical response, once the photoactivity for the photoelectrode synthesized at 0.35 C was better than the photoelectrode synthesized at 1.00 C, which was explained by the surface recombination process and the electron lifetime. In order to explore the charge-transfer process and the displacement of the quasi-Fermi level upon illumination, electrochemical impedance spectroscopy (EIS) was performed at distinct applied potentials. EIS results corroborate the previous results, presenting a higher charge-transfer resistance and a lower chemical capacitance for the 1.00 C electrode film, the last one in accordance with the open-circuit voltage decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Omata T, Nagatani H, Suzuki I, Kita M, Yanagi H, Ohashi N (2014) Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J Am Chem Soc 136:3378–3381

    Article  CAS  Google Scholar 

  2. Behrouznejad F, Taghavinia N (2014) High-performance/low-temperature-processed dye solar cell counter electrodes based on chromium substrates with cube-like morphology. J Power Sources 260:299–306

    Article  CAS  Google Scholar 

  3. Gupta A, Vashistha M, Sharma P (2014) Single junctions a-Si:H solar cell with a-Si:H/nc-Si:H/a-Si:H quantum wells. Thin Solid Films 550:643–648

    Article  CAS  Google Scholar 

  4. Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344:1005–1009

    Article  CAS  Google Scholar 

  5. Lu X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y (2014) Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. J Am Chem Soc 136:419–426

    Article  CAS  Google Scholar 

  6. Gai Y, Li J, Li SS, Xia JB, Wei SH (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402

    Article  Google Scholar 

  7. Long R, English NJ (2009) First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania. Appl Phys Lett 94:132102

    Article  Google Scholar 

  8. Preclíková J, Galár P, Trojánek F, Rezek B, Nemcová Y, Malý P (2011) Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles. J Appl Phys 109:083528

    Article  Google Scholar 

  9. Hari M, Joseph SA, Mathew S, Radhakrishnan P, Nampoori VPN (2012) Band-gap tuning and nonlinear optical characterization of Ag: TiO2 nanocomposites. J Appl Phys 112:074307

    Article  Google Scholar 

  10. Eufinger K, Poelman D, Poelman H, De Gryse R, Marin GB (2007) Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl Surf Sci 254:148–152

    Article  CAS  Google Scholar 

  11. Nisar J, Topalian Z, De Sarkar A, Osterlund L, Ahuja R (2013) TiO2-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces 5:8516–8522

    Article  CAS  Google Scholar 

  12. Baghery P, Farzam M, Mousavi AB, Hosseini M (2010) Ni-TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf Coat Technol 204:3804–3810

    Article  CAS  Google Scholar 

  13. Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J (2014) Recent advances in TiO2-based photocatalysis. J Mater Chem A 2:12642–12661

    Article  CAS  Google Scholar 

  14. Xu C, Yang W, Guo Q, Dai D, Chen M, Yang X (2014) Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2 (101). J Am Chem Soc 136:602–605

    Article  CAS  Google Scholar 

  15. Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ, Nicholas RJ (2014) Low-temperature processed electron collection layers of graphene/tio2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730

    Article  CAS  Google Scholar 

  16. Roiati V, Mosconi E, Listori A, Colella S, Gigli G, De Angelis F (2014) Stark effect in perovskite/tio2 solar cells: evidence of local interfacial order. Nano Lett 14:2168–2174

    Article  CAS  Google Scholar 

  17. Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrogen Energy 37:8897–8904

    Article  CAS  Google Scholar 

  18. Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochem Acta 107:313–319

    Article  CAS  Google Scholar 

  19. Yun HJ, Lee H, Joo JB, Kim ND, Yi J (2011) Effect of TiO2 nanoparticles shape on hydrogen evolution via water splitting. J Nanosci Nanotechno 11:1–4

    Article  Google Scholar 

  20. Freitas RG, Santanna MA, Pereira EC (2014) Preparation and characterization of TiO2 nanotube arrays in ionic liquid for water splitting. Electrochem Acta 136:404–411

    Article  CAS  Google Scholar 

  21. Hartmann P, Lee DK, Smarsly BM, Janek J (2010) Mesoporous TiO2: comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4:3147–3154

    Article  CAS  Google Scholar 

  22. Drev M, Krasovec UO, Hocevar M, Berginc M, Macek MK, Topic M (2011) Pechini based titanium sol as a matrix in TiO2 pastes for dye-sensitized solar cell applications. J Sol-Gel Sci Technol 59:245–251

    Article  CAS  Google Scholar 

  23. Phan TDN, Pham HD, Cuong TV, Kim EJ, Kim S, Shin EW (2009) A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid. J Cryst Growth 312:79–85

    Article  CAS  Google Scholar 

  24. Silva NR, Cid CCP, Spada ER, Reis FT, Faria RM, Sartorelli ML (2014) Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential. J Mater Sci 49:2952–2959

    Article  CAS  Google Scholar 

  25. Campos CS, Spada ER, Paula FR, Reis FT, Faria RM, Sartorelli ML (2012) Raman and XRD study on brookite-anatase coexistence in cathodic electrosynthesized titania. J Raman Spectrosc 43:433–438

    Article  CAS  Google Scholar 

  26. Karuppuchamy S, Suzuki N, Ito S, Endo T (2009) A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature. Curr Appl Phys 9:243–248

    Article  Google Scholar 

  27. Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics 151:19–27

    Article  CAS  Google Scholar 

  28. Garcia-Blemonte G, Bisquert J (2002) Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electrode morphology. Electrochim Acta 47:4263–4272

    Article  Google Scholar 

  29. Abrantes LM, Peter LM (1983) Transient photocurrents at passive iron electrodes. J Electroanal Chem Interfacial Electrochem 150:593–601

    Article  CAS  Google Scholar 

  30. Peter LM (1990) Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 90:753–769

    Article  CAS  Google Scholar 

  31. Luo J, Huang HG, Zhang HP, Wu LL, Lin ZH, Hepel M (2000) Studies on photoelectrochemistry of nano-particulate TiO2/PANI/PATP film on Au electrodes. J New Mat Electr Sys 3:249–252

    CAS  Google Scholar 

  32. Solarska R, Rutkowska I, Augustynski J (2008) Unusual photoelectrochemical behaviour of nanocrystalline TiO2 films. Inorg Chim Acta 361:792–797

    Article  CAS  Google Scholar 

  33. Meekins BH, Kamat PV (2009) Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3:3437–3446

    Article  CAS  Google Scholar 

  34. Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550–13559

    Article  CAS  Google Scholar 

  35. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  36. Hossain MF, Biswas S, Zhang ZH, Takahashi T (2011) Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J Photochem Photobiol A 217:68–75

    Article  CAS  Google Scholar 

  37. Gimenez S, Dunn HK, Rodenas P, Fabregat-Santiago F, Miralles SG, Barea EM, Trevisan R, Guerrero A, Bisquert J (2012) Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 668:119–125

    Article  CAS  Google Scholar 

  38. Marchesi LF, Pereira EC (2014) The influence of the drying process on electrochemical properties of P3HT/PCBM (1.00/0.25 wt%) electrodes. Synth Met 194:82–87

    Article  CAS  Google Scholar 

  39. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc 130:11312–11316

    Article  CAS  Google Scholar 

  40. Mora-Seró I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945–949

    Article  Google Scholar 

Download references

Acknowledgments

The authors should thank the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Universal Project (446320/2014-5) and Scholarship (158984/2014-5), the National Institute for Science and Technology on Organic Electronics (INEO), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Fundação Araucária do Estado do Paraná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchesi, L.F., Freitas, R.G., Spada, E.R. et al. Photoelectrochemical characterization of ITO/TiO2 electrodes obtained by cathodic electrodeposition from aqueous solution. J Solid State Electrochem 19, 2205–2211 (2015). https://doi.org/10.1007/s10008-015-2848-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2848-1

Keywords

Navigation