Skip to main content
Log in

Room temperature Bi2Te3-based thermoelectric materials with high performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Several off-stoichiometric compositions Bi0.5Sb1.5+xTe3+δ (x = 0.2; δ = 0, 0.12, 0.14) were deliberately synthesized to produce in-situ composites based on compositional engineering approach. The structural characterization of these materials employing XRD, SEM, and HR-TEM reveals the formation of in-situ-composites containing Bi0.5Sb1.5Te3 as matrix phase and minor phases of either Sb rich or Te rich in different compositions. Thermoelectric properties of these Bi0.5Sb1.5+xTe3+δ (x = 0.2; δ = 0, 0.12, 0.14) composites were studied in a wide range of temperatures extending from room temperature to 500 K. The electronic transport of these composites exhibits p-type semiconducting materials. The lowest thermal conductivity of ~ 0.69 W/m K @310 K was observed for Bi0.5Sb1.7Te3.12 composite, which was noted to be 14% reduced thermal conductivity when compared with that of the state-of-the-art Bi0.5Sb1.5Te3 (κ\(=\) 0.82 W/m K) material. In addition to this, an enhanced power factor was also observed in Bi0.5Sb1.7Te3.12 which is primarily due to increased electrical conductivity of these materials. This enhanced power factor of the composition of Bi0.5Sb1.7Te3.12 coupled with reduced thermal conductivity yields to high ZT ~ 1.13 at nearly room temperature, making these materials viable for large scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  2. M.E. Anderson, S.S.N. Bharadwaya, R.E. Schaak, Modified polyol synthesis of bulk-scale nanostructured bismuth antimony telluride. J. Mater. Chem. 20, 8362–8367 (2010). https://doi.org/10.1039/C0JM01424A

    Article  CAS  Google Scholar 

  3. S. Dutta, V. Shubha, T.G. Ramesh, Reduction in thermal conductivity of Bi-Te alloys through grain refinement method. Bull. Mater. Sci. 36, 853–857 (2013). https://doi.org/10.1007/s12034-013-0532-6

    Article  CAS  Google Scholar 

  4. Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv. Energy Mater. 5, 1401391 (2015)

    Article  Google Scholar 

  5. Y. Zhang, X. Jia, H. Sun, B. Sun, B. Liu, H. Liu, L. Kong, H. Ma, Enhanced thermoelectric performance of nanostructured CNTs/BiSbTe bulk composite from rapid pressure-quenching induced multi-scale microstructure. J. Mater. 2, 316–323 (2016)

    Google Scholar 

  6. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011). https://doi.org/10.1038/nature09996s

    Article  CAS  Google Scholar 

  7. M. Cho, Two-dimensional optical spectroscopy (CRC Press, Boca Raton, 2009). https://doi.org/10.1201/9781420084306

    Book  Google Scholar 

  8. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015)

    Article  Google Scholar 

  9. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, High figures of merit and natural nanostructures in Mg 2 Si 0.4 Sn 0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)

    Article  Google Scholar 

  10. M. Guan, K. Zhao, P. Qiu, D. Ren, X. Shi, L. Chen, Enhanced thermoelectric performance of quaternary Cu2–2XAg2XSe1XSX Liquid-like Chalcogenides. ACS Appl. Mater. Interfaces 11, 13433–13440 (2019)

    Article  CAS  Google Scholar 

  11. N.S. Chauhan, S. Bathula, B. Gahtori, Y.V. Kolen’ko, A. Dhar, Enhanced thermoelectric performance in Hf-Free p-type (Ti, Zr) CoSb half-heusler alloys. J. Electron. Mater. 48, 6700–6709 (2019)

    Article  CAS  Google Scholar 

  12. Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT: PSS composite films. ACS Appl. Mater. Interfaces 6, 5735–5743 (2014)

    Article  CAS  Google Scholar 

  13. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 62111 (2005)

    Article  Google Scholar 

  14. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283–3289 (2010)

    Article  CAS  Google Scholar 

  15. B. Chen, J. Li, M. Wu, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, C. Zhang, Simultaneous enhancement of the thermoelectric and mechanical performance in one-step sintered n-type Bi2Te3-based alloys via a facile MgB2 doping strategy. ACS Appl. Mater. Interfaces 11, 45746–45754 (2019)

    Article  CAS  Google Scholar 

  16. M.U. Muzaffar, B. Zhu, Q. Yang, Y. Zhou, S. Zhang, Z. Zhang, J. He, Suppressing bipolar effect to broadening the optimum range of thermoelectric performance for p-type bismuth telluride–based alloys via calcium doping. Mater. Today Phys. 9, 100130 (2019)

    Article  Google Scholar 

  17. Z. Wang, Y. Yokoyama, T. Onda, Y. Adachi, Z. Chen, Improved thermoelectric properties of hot-extruded Bi–Te–Se bulk materials with Cu doping and property predictions via machine learning. Adv. Electron. Mater. 5, 1900079 (2019)

    Article  Google Scholar 

  18. P.-C. Gharleghi, F.-H. Hung, C.-J. Lin, Liu, Enhanced ZT of In x Co4Sb12–InSb nanocomposites fabricated by hydrothermal synthesis combined with solid-vapor reaction: a signature of phonon-glass and electron-crystal materials. ACS Appl. Mater. Interfaces 8, 35123–35131 (2016)

    Article  CAS  Google Scholar 

  19. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  20. Q. Zhang, B. Gu, Y. Wu, T. Zhu, T. Fang, Y. Yang, J. Liu, B. Ye, X. Zhao, Evolution of the intrinsic point defects in bismuth telluride-based thermoelectric materials. ACS Appl. Mater. Interfaces 11, 41424–41431 (2019)

    Article  CAS  Google Scholar 

  21. K.T. Kim, T.S. Min, S.-D. Kim, E.-A. Choi, D.W. Kim, S.-Y. Choi, Strain-mediated point defects in thermoelectric p-type bismuth telluride polycrystalline. Nano Energy 55, 486–493 (2019)

    Article  CAS  Google Scholar 

  22. J. Li, C. Zhang, Y. Feng, C. Zhang, Y. Li, L. Hu, W. Ao, F. Liu, Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing. J. Alloys Compd. 808, 151747 (2019)

    Article  CAS  Google Scholar 

  23. W.M. Yim, E.V. Fitzke, F.D. Rosi, Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300°K. J. Mater. Sci. 1, 52–65 (1966). https://doi.org/10.1007/BF00549720

    Article  CAS  Google Scholar 

  24. D.M. Rowe, CRC handbook of thermoelectrics (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  25. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008). https://doi.org/10.1126/science.1156446

    Article  CAS  Google Scholar 

  26. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, H.H. Hng, p-type Bi 0.4 Sb 1.6 Te 3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010)

    Article  Google Scholar 

  27. S.V. Ovsyannikov, N.V. Morozova, I.V. Korobeinikov, L.N. Lukyanova, A.Y. Manakov, A.Y. Likhacheva, A.I. Ancharov, A.P. Vokhmyanin, I.F. Berger, O.A. Usov, V.A. Kutasov, V.A. Kulbachinskii, T. Okada, V.V. Shchennikov, Enhanced power factor and high-pressure effects in (Bi, Sb)2(Te, Se)3 thermoelectrics. Appl. Phys. Lett. 106, 3–8 (2015). https://doi.org/10.1063/1.4916947

    Article  CAS  Google Scholar 

  28. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, J.P. Tu, Syntheses and thermoelectric properties of Bi2 Te3 Sb2 Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2900960

    Article  Google Scholar 

  29. J.J. Shen, T.J. Zhu, X.B. Zhao, S.N. Zhang, S.H. Yang, Z.Z. Yin, Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties. Energy Environ. Sci. (2010). https://doi.org/10.1039/c0ee00012d

    Article  Google Scholar 

  30. H.J. Goldsmid, Electronic refrigeration (Pion, London, 1986), pp. 57–87

    Google Scholar 

  31. B.H. Poudel, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D. Chen, X. Liu, J. Dresselhaus, M.S. Chen, and Ren Z, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  32. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008)

    Article  CAS  Google Scholar 

  33. S. Il Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015). https://doi.org/10.1126/science.aaa4166

    Article  CAS  Google Scholar 

  34. R. Deng, X. Su, Z. Zheng, W. Liu, Y. Yan, Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, X. Tang, Dense dislocation arrays at grain boundaries. Sci. Adv. 4, eaar5606 (2018)

    Article  Google Scholar 

  35. P. Lu, L. Chen, H. Chen, F. Hao, D. Ren, Q. Song, P. Qiu, X. Shi, Roles of Cu in the enhanced thermoelectric properties in Bi0.5Sb1.5Te3. Materials (Basel). 10, 251 (2017). https://doi.org/10.3390/ma10030251

    Article  CAS  Google Scholar 

  36. Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, Attaining high mid-temperature performance in (Bi, Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 8, e302 (2016)

    Article  CAS  Google Scholar 

  37. W.M. Yim, F.D. Rosi, Compound tellurides and their alloys for peltier cooling—a review. Solid State Electron. 15, 1121–1140 (1972)

    Article  CAS  Google Scholar 

  38. W.M. Yim, E.V. Fitzke, F.D. Rosi, Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J. Mater. Sci. 1, 52–65 (1966)

    Article  CAS  Google Scholar 

  39. E.S. Zevalkink, W.G. Toberer, E. Zeier, G.J. Flage-Larsen, Snyder, Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510–518 (2011). https://doi.org/10.1039/C0EE00517G

    Article  CAS  Google Scholar 

  40. G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: basic principles and new materials developments (Springer, New York, 2013)

    Google Scholar 

  41. F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, High efficiency Bi2 Te3-based materials and devices for thermoelectric power generation between 100 and 300 C. Energy Environ. Sci. 9, 3120–3127 (2016)

    Article  CAS  Google Scholar 

  42. G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003)

    Article  Google Scholar 

  43. G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004)

    Article  CAS  Google Scholar 

  44. E. Maciá, Compatibility factor of segmented thermoelectric generators based on quasicrystalline alloys. Phys. Rev. B 70, 100201 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Authors highly acknowledge Director, NPL, and Head of Department, Division of Indian Reference Materials, NPL, New Delhi for their constant encouragement and support. One of the authors, SB, greatly acknowledges the financial support from UGC. The authors acknowledge Dr. J.J. Pulikkotil for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, S., Kumar, A., Govind, B. et al. Room temperature Bi2Te3-based thermoelectric materials with high performance. J Mater Sci: Mater Electron 31, 8607–8617 (2020). https://doi.org/10.1007/s10854-020-03396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03396-6

Navigation