Skip to main content
Log in

Ultralow-loss and thermally stable Li4MgSn(2–1.25x)NbxO7 microwave dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li4MgSn(2–1.25x)NbxO7 (L4MS-Nbx, 0 ≤ x ≤ 0.15) ceramics were prepared through a solid-state reaction method. The effects of Nb5+ substitution for Sn4+ on the phase composition, sintering behavior, and microwave dielectric properties were investigated systematically. The substitution of Nb5+ lowers the lattice thermal stability and declines the optimal sintering temperature of L4MS ceramics. The temperature at which the secondary phase occurs is lowered with increasing Nb5+ content owing to the promoted sintering behavior. The appearance of the secondary phase leads to the occurrence of cracks between grains. Moreover, the substitution of Nb5+ in L4MS causes Sn4+ vacancies, which increase the dielectric loss and therefore reduce Q × f values, and simultaneously leads to an increase in the dielectric polarizability, which makes τf move to near-zero values. As a result, excellent microwave dielectric properties of εr = 14, Q × f = 123,000 GHz (9.34 GHz), τf =  + 4.1 ppm/°C were obtained for the x = 0.11 ceramic sintered at 1125 °C for 6 h, showing large potentials in microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  2. S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11, 316–321 (2010)

    Google Scholar 

  3. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  4. L.L. Yuan, J.J. Bian, Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 387, 123–129 (2009)

    Article  CAS  Google Scholar 

  5. J.L. Hodeau, M. Marezio, A. Santoro, R.S. Roth, Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3. J. Solid State Chem. 45, 170–179 (1982)

    Article  CAS  Google Scholar 

  6. L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)

    Article  CAS  Google Scholar 

  7. C.F. Tseng, P.J. Tseng, C.M. Chang, Y.C. Kao, Novel temperature stable Li2MnO3 dielectric ceramics with high Q for LTCC applications. J. Am. Ceram. Soc. 97, 1918–1922 (2014)

    Article  CAS  Google Scholar 

  8. Z. Fu, P. Liu, J. Ma, X. Zhao, H. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625–629 (2016)

    Article  CAS  Google Scholar 

  9. M. Castellanos, A.R. West, Compound and solid solution formation in the system, Li2SnO3-MgO. J. Mater. Sci. Lett. 3, 786–788 (1984)

    Article  CAS  Google Scholar 

  10. R.Z. Zuo, J. Zhang, J. Song, Y.D. Xu, Liquid-phase sintering, microstructural evolution, and microwave dielectric properties of Li2Mg3SnO6-LiF ceramics. J. Am. Ceram. Soc. 101, 569–576 (2018)

    Article  CAS  Google Scholar 

  11. Z.X. Fang, B. Tang, Y. Yuan, X. Zhang, S.R. Zhang, Structure and microwave dielectric properties of the Li2/3(1–x)Sn1/3(1–x)MgxO systems (x = 0–4/7). J. Am. Ceram. Soc. 101, 252–264 (2018)

    Article  CAS  Google Scholar 

  12. R.Z. Zuo, H. Qi, F. Qing, Q.L. Dai, A new Li-based ceramic of Li4MgSn2O7: synthesis, phase evolution and microwave dielectric properties. J. Eur. Ceram. Soc. 38, 5442–5447 (2018)

    Article  CAS  Google Scholar 

  13. J. Ma, Z. Fu, P. Liu, L. Zhao, B. Guo, Ultralow-fired Li2Mg3TiO6-Ca0.8Sr0.2TiO3 composite ceramics with temperature stable at microwave frequency. J. Alloys Compd. 709, 299–303 (2017)

    Article  CAS  Google Scholar 

  14. P. Zhang, H. Xie, Y. Zhao, M. Xiao, Microwave dielectric properties of low lossLi2(Mg0.95A0.05) (A = Ca2+, Ni2+, Zn2+, Mn2+) ceramics system. J. Alloys Compd. 689, 246–249 (2016)

    Article  CAS  Google Scholar 

  15. H.L. Pan, Y.W. Zhang, H.T. Wu, Crystal structure, infrared spectroscopy and microwave dielectric properties of ultra low-loss Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 ceramic. Ceram. Int. 44, 3464–3468 (2018)

    Article  CAS  Google Scholar 

  16. C.H. Yang, H.T. Wu, Phase composition, Raman spectra, infrared spectra and dielectric properties of Li2MgTi1-x(Mg1/3Nb2/3)xO4 ceramics at microwave frequency. Ceram. Int. 44, 9255–9262 (2018)

    Article  CAS  Google Scholar 

  17. K. Page, T. Kolodiazhnyi, T. Proffen, A.K. Cheetham, R. Seshadri, Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3. Phys. Rev. Lett. 101, 205502 (2008)

    Article  Google Scholar 

  18. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theor. Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  19. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theor. Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  20. J. Zhang, R.Z. Zuo, A novel self-composite property-tunable LaTiNbO6 microwave dielectric ceramic. Mater. Res. Bull. 83, 568–572 (2016)

    Article  CAS  Google Scholar 

  21. Y.C. Chen, Y.N. Wang, C.H. Hsu, Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ with Ni2+. Mater. Chem. Phys. 133, 829–833 (2012)

    Article  CAS  Google Scholar 

  22. Z. Fu, J. Ma, P. Liu, B.C. Guo, X.M. Chen, Microwave dielectric properties of low-fired Li2MnO3 ceramics co-doped with LiF-TiO2. Ceram. Int. 42, 6005–6009 (2016)

    Article  CAS  Google Scholar 

  23. L.X. Pang, D. Zhou, Microwave dielectric properties of Low-Firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)

    Article  CAS  Google Scholar 

  24. K. Maex, M.R. Baklanov, D. Shamiryan, F. Lacopi, S.H. Brongersma, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793–8841 (2003)

    Article  CAS  Google Scholar 

  25. R.D. Shannon, G.R. Rossman, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94–100 (1992)

    CAS  Google Scholar 

  26. R.D. Shannon, R.X. Fischer, Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B 73, 235111 (2006)

    Article  Google Scholar 

  27. J. Zhang, R.Z. Zuo, Sintering behavior, structural phase transition, and microwave dielectric properties of La1-xZnxTiNbO6-x/2 ceramics. J. Am. Ceram. Soc. 100, 4362–4368 (2017)

    Article  CAS  Google Scholar 

  28. E.L. Colla, I.M. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys. 74, 3414–3425 (1993)

    Article  CAS  Google Scholar 

  29. S.Y. Cho, H.J. Youn, H.J. Lee, K.S. Hong, Contribution of structure to temperature dependence of resonant frequency in the (1–x)La(Zn1/2Ti1/2)O3·xATiO3(A = Ca, Sr) system. J. Am. Ceram. Soc. 84, 753–758 (2001)

    Article  CAS  Google Scholar 

  30. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593 (1963)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Anhui Provincial Natural Science Foundation (1508085JGD04) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhong Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Zhang, S. & Zuo, R. Ultralow-loss and thermally stable Li4MgSn(2–1.25x)NbxO7 microwave dielectric ceramics. J Mater Sci: Mater Electron 31, 5567–5572 (2020). https://doi.org/10.1007/s10854-020-03121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03121-3

Navigation