Skip to main content
Log in

Substrate effect on structural and electrochemical properties of LiFePO4 thin films grown by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LiFePO4 thin films are grown by pulsed laser deposition technique in relation to deposition parameters. Different characterizations such as XRD, SEM, Raman, and electrochemical studies are undertaken on the prepared samples. Structural phase of the deposited thin film expresses the orthorhombic Pnma olivine. LiFePO4 thin films grown on Pyrex glass substrate have harsh surface with a few dispatches of grains, whereas the thin films deposited on ITO-coated glass substrate have demonstrated exceptionally fine and uniform particles without dispatches of grains. Raman peaks are situated at 1237.7 and 1416 cm−1. From the conductivity studies, the conductivity has been raised for the Pyrex glass up to 1.1 × 10−4 S cm−1 at 373 K, whereas in case of ITO-coated glass, the conductivity has been enhanced up to 1.6 × 10−4 S cm−1 at 373 K. The transmission spectra change CC from obscurity state to free state from 15 to 83% at around 39 cm2 C−1. CV of LiFePO4 thin film on ITO-coated glass substrate has exhibited the anodic and cathodic peaks at 3.2 and 3.19 V. These outcomes demonstrate that the determination of a suitable substrate is significant for creating the film terminal with the high rate limit, particularly in considering the utilization of microbatteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Manikandan, M. Durka, M. Amutha Selvi, S. Arul Antony, J. Nanosci. Nanotechnol. 16(1), 448–456 (2016)

    CAS  Google Scholar 

  2. Y. Slimani, A. Baykal, M. Amir, N. Tashkandi, A. Manikandan, Ceram. Int. 44(13), 15995–16004 (2018)

    CAS  Google Scholar 

  3. A. Manikandan, R. Sridhar, S.A. Antony, S. Ramakrishna, J. Mol. Struct. 1076, 188–200 (2014)

    CAS  Google Scholar 

  4. A. Silambarasu, A. Manikandan, K. Balakrishnan, J. Supercond. Nov. Magn. 30(9), 2631–2640 (2017)

    CAS  Google Scholar 

  5. A. Manikandan, M. Durka, S. Arul Antony, Adv. Sci. Eng. 7(1), 33–36 (2015)

    CAS  Google Scholar 

  6. R. Bomila, S. Srinivasan, S. Gunasekaran, A. Manikandan, J. Supercond. Nov. Magn 31(3), 855–864 (2016)

    Google Scholar 

  7. A.T. Ravichandran, J. Srinivas, R. Karthick, A. Manikandan, A. Baykal, Ceram. Int. 44(11), 13247–13252 (2018)

    CAS  Google Scholar 

  8. S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan, A. Baykal, Ceram. Int. 44(5), 5751–5759 (2018)

    CAS  Google Scholar 

  9. Y.J. Kim, H. Kim, B. Kim, D. Ahl, J.G. Lee, T. Kim, D. Son, J. Cho, Y. Kim, B. Park, Chem. Mater. 15, 1505–1507 (2003)

    CAS  Google Scholar 

  10. C. Julien, M.A. Camacho-Lopez, L. Escobar-Alarcón, E. Haro-Poniatowski, Mater. Chem. Phys. 68, 210–216 (2000)

    Google Scholar 

  11. S. Yu, W. Yang, L. Li, W. Zhang, Sol. Energy Mater. Sol. Cells 144, 652–656 (2016)

    CAS  Google Scholar 

  12. E. Priyadharshini, S. Suresh, S. Gunasekaran, S. Srinivasan, A. Manikandan, Phys B 569, 8–13 (2019)

    CAS  Google Scholar 

  13. M. Anandha Jothi, D. Vanitha, N. Nallamuthu, A. Manikandan, S. Asath Bahadur, Phys B 580(1), 411940 (2019)

    Google Scholar 

  14. E. Priyadharshini, S. Suresh, S. Srinivasan, A. Manikandan, Phys B 566, 17–22 (2019)

    CAS  Google Scholar 

  15. V. Parameswaran, N. Nallamuthu, P. Devendran, E.R. Nagarajan, A. Manikandan, Phys B 515, 89–98 (2017)

    CAS  Google Scholar 

  16. R. Liu, J. Chen, Z. Li, Q. Ding, A. Xiaoshuai, Y. Pan, Z. Zheng, M. Yang, D. Fu, Mater. 11, 2243–2251 (2018)

    Google Scholar 

  17. L. Chen, Z. Chen, S. Liu, H. Zhang, Q. Huang, Int. J. Electrochem. Sci. 13, 5413–5424 (2018)

    CAS  Google Scholar 

  18. H. Xia, S.B. Tang, L. Lu, J. Korean Phys. Soc. 51, 1055–1062 (2007)

    CAS  Google Scholar 

  19. S. Passerini, B. Scrosati, J. Electrochem. Soc. 141, 889–895 (1994)

    CAS  Google Scholar 

  20. M. Broussely, F. Perton, J. Labat, R.J. Staniewicz, A. Romero, J. Power Sources 217, 43–44 (1993)

    Google Scholar 

  21. F. Yu, J. Zhang, Y. Yang, G. Song, J. Power Sources 195, 6873–6878 (2010)

    CAS  Google Scholar 

  22. A. Qiu, Q. Zhang, H. Hu, J. Wang, J. Liu, Y. Xia, Y. Zeng, X. Wang, Z. Liu, Electrochim. Acta 123, 317–324 (2014)

    CAS  Google Scholar 

  23. K. Nakura, K. Ariyoshi, H. Yoshizawa, T. Ohzuku, J. Electrochem. Soc. 162, A622–A628 (2015)

    CAS  Google Scholar 

  24. N. Paul, J. Wandt, S. Seidlmayer, S. Schebesta, M.J. Mühlbauer, O. Dolotko, H.A. Gasteiger, R. Gilles, J. Power Sources 345, 85–96 (2017)

    CAS  Google Scholar 

  25. L. Gao, Z. Xu, S. Zhang, J. Xu, K. Tang, Solid State Ionics 305, 52–56 (2017)

    CAS  Google Scholar 

  26. D.P. Tran, H.I. Lu, C.K. Lin, Coatings 8, 212–227 (2018)

    Google Scholar 

  27. M. Boehme, C. Charton, Surf. Coat. Technol. 200, 932–935 (2005)

    CAS  Google Scholar 

  28. D.P. Tran, H.I. Lu, C.K. Lin, Surf. Coat. Technol. 283, 298–310 (2015)

    CAS  Google Scholar 

  29. J. Lee, M.A. Petruska, S. Sun, J. Phys. Chem. 118(22), 12017–12021 (2014)

    CAS  Google Scholar 

  30. J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Electrochim. Acta 54, 4537–4631 (2009)

    Google Scholar 

  31. M. Köhler, F. Berkemeier, T. Gallasch, G. Schmitz, J. Power Sources 236, 61–67 (2013)

    Google Scholar 

  32. A. Yada, Y. Iriyama, S.K. Jeong, T. Abe, M. Inaba, Z. Ogumi, J. Power Sources 146, 559–564 (2005)

    CAS  Google Scholar 

  33. A. Khoobi, S. Mehdi Ghoreishi, B. Mohsen, M. Shaterian, M. Salavati-Niasari, Colloids Surf. B Biointerfaces 123, 648–656 (2014)

    CAS  Google Scholar 

  34. A. Khoobi, S.M. Ghoreishi, S. Masoum, M. Behpour, Bioelectrochem. 94, 100–107 (2013)

    CAS  Google Scholar 

  35. A. Khoobi, A. Mohammad Attaran, M. Yousof, M. Enhessari, J. Nanostructure Chem. 9, 29–37 (2019)

    CAS  Google Scholar 

  36. A. Salehabadi, M. Salavati-Niasari, T. Gholami, A. Khoobi, Int. J. Hydrogen Energ 43, 9713–9721 (2018)

    CAS  Google Scholar 

  37. S. Yang, P.Y. Zavalij, M.S. Whittingham, Electrochem. Commun. 3, 505–507 (2001)

    CAS  Google Scholar 

  38. F. Sauvage, E. Baudrin, L. Gengembre, J.M. Tarascon, Solid State Ionics 176, 1869–1876 (2005)

    CAS  Google Scholar 

  39. J. Sun, K. Tang, X. Yu, H. Li, X. Huang, Thin Solid Films 517, 2618–2622 (2009)

    CAS  Google Scholar 

  40. S.W. Song, R.P. Reade, R. Kostecki, K.A. Striebel, J. Electrochem. Soc. 153, A12–A19 (2006)

    CAS  Google Scholar 

  41. Z.G. Lu, M.F. Lo, C.Y. Chung, J. Phys. Chem. C 112, 7069–7075 (2008)

    CAS  Google Scholar 

  42. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Electrochim. Acta 56, 4869–4875 (2011)

    CAS  Google Scholar 

  43. Z.G. Lu, H. Cheng, M.F. Lo, C.Y. Chung, Adv. Funct. Mater. 17, 3885–3896 (2007)

    CAS  Google Scholar 

  44. J. Ma, Q.Z. Qin, J. Power Sources 148, 66–71 (2005)

    CAS  Google Scholar 

  45. A.J. Fisher, V.M. Hart Prieto, M. Saiful Islam, Chem. Mater. 20, 5907–5915 (2008)

    CAS  Google Scholar 

  46. N. Kuwata, R. Kumar, K. Toribami, T. Suzuki, T. Hattori, Solid State Ionics 177, 2827–2832 (2006)

    CAS  Google Scholar 

  47. H.C. Dinh, S.I. Mho, Y. Kang, I.H. Yeo, J. Power Sources 244, 189–195 (2013)

    CAS  Google Scholar 

  48. S. Novikova, S. Yaroslavtsev, V. Rusakov, A. Chekannikov, T. Kulova, A. Skundin, A. Yaroslavtsev, J. Power Sources 300, 444–452 (2015)

    CAS  Google Scholar 

  49. M. Chen, L. Shao, H. Yang, T. Ren, G. Du, Z. Yuan, Electrochim. Acta 167, 278–286 (2015)

    Google Scholar 

  50. J.Z. Li, S.Y. Wang, L.H. Wei, Z. Liu, Y.W. Tian, Int. J. Electrochem. Sci. 10, 6135–6145 (2015)

    CAS  Google Scholar 

  51. R. Chen, Y. Wu, X.Y. Kong, J. Power Sources 258, 246–252 (2014)

    CAS  Google Scholar 

  52. X. Zeng, Q. Liu, M. Chen, L. Leng, T. Shu, L. Du, H. Song, S. Liao, Electrochim. Acta 177, 277–282 (2015)

    CAS  Google Scholar 

  53. N. Yabuuchi, T. Ohzuku, J. Power Sources 146, 636–639 (2005)

    CAS  Google Scholar 

  54. C.L. Liao, K.Z. Fung, J. Power Sources 128, 263–269 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

The author, Jaesool Shim, is thankful to the financial assistance supported by National Research Foundation of Korea (NRF) funded by the Korea government (2017R1A4A1015581, 2019R1F1A1060655 and 2018R1A2B6002849).

Funding

There are no funding sources for this article work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaesool Shim or M. C. Rao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutavarapu, R., Shim, J. & Rao, M.C. Substrate effect on structural and electrochemical properties of LiFePO4 thin films grown by pulsed laser deposition. J Mater Sci: Mater Electron 31, 5040–5046 (2020). https://doi.org/10.1007/s10854-020-03037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03037-y

Navigation