Skip to main content
Log in

Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rapid heat dissipation is the pain point of modern miniaturized electronic equipment and components. High-power and high-efficiency operation puts forward higher requirements on the heat transfer capability of thermal interface materials (TIM). In this work, taking advantage of synergistic effect between thermally conductive fillers graphene and alumina (Al2O3), thermal grease-based TIM was prepared. Secondly, the effects of temperature and pressure on the thermal interface resistance were studied. Lastly, coating thickness and thermal stability of thermal grease-based TIM were tested. These results show thermal conductivity of composite as high as 4.38 W/(m K). The interface thermal resistance is as low as 0.243 °C cm2/W (80 °C, 60 psi) in case that the temperature and pressure strain capability within a certain range are subsequently considerable. Furthermore, the oil leakage is fractional when the silicone grease was placed at 80 °C for 600 h, showing good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Gordon, Transl. Mater. Res. 2, 020301 (2015)

    Article  Google Scholar 

  2. R.A. Shishkin, A.P. Zemlyanskaya, A.R. Beketov, Solid State Phenom. 284, 48 (2018)

    Article  Google Scholar 

  3. S. Shaikh, K. Lafdi, E. Silverman, Carbon 45, 69 (2007)

    Google Scholar 

  4. J. Yang, S. Wang, H. Chen, Int. J. Heat Mass Transf. 97, 146 (2016)

    Article  Google Scholar 

  5. D.M. Bi, Cryogenics 24, 46 (2011)

    Google Scholar 

  6. A.J. Mcnamara, Y. Joshi, Z.M. Zhang, Int. J. Therm. Sci. 62, 2 (2012)

    Article  CAS  Google Scholar 

  7. J. Due, A.J. Robinson, Appl. Therm. Eng. 50, 455 (2013)

    Article  CAS  Google Scholar 

  8. K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Microelectron. Reliab. 51, 2031 (2011)

    Article  Google Scholar 

  9. R. Prasher, Proc. IEEE 94, 1571 (2006)

    Article  CAS  Google Scholar 

  10. A. Gowda, D. Esler, S.N. Paisner, S. Tonapi, K. Nagarkar, K. Srihari, IEEE Semiconductor Thermal Measurement & Management Symposium. (2005)

  11. X. Huang, P. Jiang, T. Tanaka, IEEE Electr. Insul. Mag. 27, 8 (2011)

    Article  Google Scholar 

  12. B.L. Zhu, J. Ma, J. Wu, K.C. Yung, C.S. Xie, J. Appl. Polym. Sci. 118, 2754 (2010)

    Article  CAS  Google Scholar 

  13. K. Kim, J. Kim, Ceram. Int. 40, 5181 (2014)

    Article  CAS  Google Scholar 

  14. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermochim. Acta 430, 155 (2005)

    Article  CAS  Google Scholar 

  15. S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochim. Acta 499, 40 (2010)

    Article  CAS  Google Scholar 

  16. C. Chen, Y.Q. Xia, J.H. Chen, China Adhes. 26, 42 (2017)

    Google Scholar 

  17. Q. Wang, W. Gao, Z. Xie, J. Appl. Polym. Sci. 89, 2397 (2003)

    Article  CAS  Google Scholar 

  18. A. Gowda, S.N. Paisner, S. Tonapi, P. Meneghetti, P. Hans, G. Strosaker, A. Acharya, K. Nagarkar, K. Srihari, Electronic Packaging Technology Conference. IEEE. (2006)

  19. Y. Gao, J. Liu, Appl. Phys. A 107, 701 (2012)

    Article  CAS  Google Scholar 

  20. H. Hong, G. Christensen, C. Widener, Procedia Manuf. 21, 623 (2018)

    Article  Google Scholar 

  21. B.L. Wadey, J. Vinyl Addit. Technol. 9, 172 (2010)

    Article  Google Scholar 

  22. G.F. Xie, D. Ding, G. Zhang, Adv. Phys. 3, 719 (2018)

    Google Scholar 

  23. C.Q. Liu, M. Chen, W. Yu, Y. He, ES Energy Environ. 2, 31 (2018)

    Google Scholar 

  24. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  CAS  Google Scholar 

  25. D.H. Zhu, G.W. Huang, L.Y. Zhang, Y. He, H.Q. Xie, W. Yu, Energy Environ. Mater. 2, 22 (2019)

    Article  CAS  Google Scholar 

  26. American Society for Testing Materials, method D5470-06 (2006)

  27. Z.Y. Wei, J.K. Yang, W.Y. Chen, K.D. Bi, D.Y. Li, Y.F. Chen, Appl. Phys. Lett. 104, 081903 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (51590902 & 51876112), the Key Subject of Shanghai Polytechnic University (Material Science and engineering; Grant Nos. XXKZD1601 and EGD18YJ0024), Hunan Provincial Natural Science Fund (2018JJ3478) and the Key projects of Hunan Provincial Education Department (no. 19A448).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changqing Liu or Wei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., He, Y., Liu, C. et al. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J Mater Sci: Mater Electron 31, 4642–4649 (2020). https://doi.org/10.1007/s10854-020-03016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03016-3

Navigation