Skip to main content
Log in

The growth kinetics of colloidal ZnO nanoparticles in alcohols

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have studied the synthesis of ZnO nanostructures over a wide range of parameters to determine the kinetics of the nanocrystals growth. The initial rapid nucleation and growth is kinetically controlled, the subsequent ZnO nanocrystals growth is thermodynamically controlled through the diffusion limited Ostwald coarsening. The ZnO coarsening rates increased with number of alcohol’s alkyl group carbons and temperature increase, pointing to importance of the solvent viscosity, dielectric constants, surface energy and the bulk solubility. The results are consistent with the Lifshitz–Slyozov–Wagner model. For all alcohols, in the NaOH induced reaction, a lower activation energy was observed compared to the aqueous reaction. A lower ZnO solubility, obtained by the water synthesis could be responsible for these observations. Our results point to the importance of the reactant selection in controlling the kinetics of the nanostructure formation, their size and the nature of the surface defects responsible for their luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Provenzale JM, Silva GA (2009) Am J Neuroradiol 30:1293–1301

    Article  CAS  Google Scholar 

  2. Ostrovsky S, Kazimirsky G, Gedanhen A, Brodie C (2009) Nano Res 2:882–890

    Article  CAS  Google Scholar 

  3. Ozgur U, Alivov YI, Liu C, Teke A, Rashchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc HJ (2005) Appl Phys 98:041301

    Article  Google Scholar 

  4. Norberg NS, Gamelin DR (2005) J Phys Chem B 109:20810–20816

    Article  CAS  Google Scholar 

  5. van Dijken A, Meulenkamp E, Vanmaekelbergh D, Meijerink A (2000) J Limin 90:123–128

    Article  Google Scholar 

  6. Maulenkamp EA (1998) J Phys Chem B 102:7764–7769

    Article  Google Scholar 

  7. Maulenkamp EA (1998) J Phys Chem B 102:5566–5572

    Article  Google Scholar 

  8. Monticone S, Tufeu R, Kanaev AV (1998) J Phys Chem B 102:2854–2862

    Article  CAS  Google Scholar 

  9. Sakohara S, Ishida M, Anderson MA (1998) J Phys Chem B 102:10169–10175

    Article  CAS  Google Scholar 

  10. Hu Z, Herrera Santos JF, Oskam G, Searson PC (2005) J Colloid Interf Sci 288:313–316

    Article  CAS  Google Scholar 

  11. Viswanatha R, Santra PK, Dasgupta C, Sarma DD (2007) PRL 98:255501-1–255501-4

    Article  Google Scholar 

  12. Zhang H, Liu Y, Wang C, Zhang J, Sun H, Li M, Yang B (2008) ChemPhysChem 9:1309–1316

    Article  CAS  Google Scholar 

  13. Han J, Luo X, Zhou D, Sun H, Zhang H, Yang Han B (2010) J Phys Chem C 114:6418–6425

    Article  CAS  Google Scholar 

  14. Brus LE (1986) J Phys Chem 90:2555–2560

    Article  CAS  Google Scholar 

  15. Hu Z, Oskam G, Searson PC (2003) J Colloid Interf Sci 263:454–460

    Article  CAS  Google Scholar 

  16. Hu Z, Oskam G, Penn RL, Pesika N, Searson PC (2003) J Phys Chem 107:3124–3130

    Article  CAS  Google Scholar 

  17. Wong EM, Bonevich JE, Searson PC (1998) J Phys Chem B 10:7770–7775

    Article  Google Scholar 

  18. Wang Y, Herron N (1990) Phys Rev B 42:7253–7255

    Article  CAS  Google Scholar 

  19. Lippens PE, Lannoo M (1989) Phys Rev B 39:10935–10942

    Article  CAS  Google Scholar 

  20. Wang Y, Herron N (1991) J Phys Chem 95:525–532

    Article  CAS  Google Scholar 

  21. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  22. Wagner C (1961) Z Elektrochem 65:581–591

    CAS  Google Scholar 

  23. Viswanatha R, Amenitsch H, Sarma DD (2007) J Am Chem Soc 129(14):4470–4475

    Article  CAS  Google Scholar 

  24. Lide DR (2006) Handbook of chemistry and physics. Taylor and Francis Group, LLC

  25. Yaroslavov AA, Sinani VA, Efimova AA, Yaroslavova EG, Rakhnyanskaya AA, Ermakov YA, Kotov NA (2005) J Am Chem Soc 127(20):7322–7323

    Article  CAS  Google Scholar 

  26. Hu Z, Escamilla Ramírez DJ, Heredia Cervera BE, Oskam G, Searson PC (2005) J Phys Chem B 109:11209–11214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants NN 518 424036, from the Ministry of Science and Higher Education and Innovative Economy POIG.01.02-00-008/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Sikora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, B., Fronc, K., Kaminska, I. et al. The growth kinetics of colloidal ZnO nanoparticles in alcohols. J Sol-Gel Sci Technol 61, 197–205 (2012). https://doi.org/10.1007/s10971-011-2614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2614-5

Keywords

Navigation