Skip to main content
Log in

Aggregation induced enhanced emission of diphenylamine and pyridine based conjugated organic materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aggregation induced emission enhancement (AIEE) was studied for diphenylamine and pyridine based donor–acceptor conjugated moieties (DPA-PA-1-3). These moieties were synthesized from Knoevenagel condensation and great solubility in organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to various alkyl chains. AIEE process was investigated from absorption/fluorescence spectroscopy and scanning electron microscopy. The absorption maximum of DPA-PA-1-3 appeared at 437, 433, 444 nm in THF solution. The optical band gaps are 2.33, 2.29, and 2.25 eV calculated from thin film absorption edges. After aggregation using different water fractions, the absorption of conjugated moiety was red shifted to 12 nm (j-aggregation) and there was no change in optical band gap. The photoluminescence spectra of three molecules were exhibited a maximum peak at 511, 515, 529 nm with greenish fluorescence in chloroform solution and 553, 541, 554 nm as in thin film state. DPA-PA-1-3 showed a delay fluorescence decay time (τ1) of 35, 16 and 14 µs respectively. Aggregation-induced emission (AIE) phenomenon of DPA-PA-1-2 was also observed and fluorescence intensity was enhanced with different water fractions. The lower electrochemical band gaps 1.90 and 1.80 eV was observed by cyclic voltammetry. The morphological images were indicated that spherically shaped particles were observed with lower surface roughness. These types of low bandgap materials have much attention for their various potential applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Roncali, P. Leriche, P. Blanchard, Adv. Mater. 26, 3821 (2014)

    Article  Google Scholar 

  2. M.G. Manjunatha, A.V. Adhikari, P.K. Hegde, J. Mater. Sci.: Mater. Electron. 21, 751 (2010)

    Google Scholar 

  3. P. Sonar, S.G. Santamaria, T.T. Lin, A. Sellinger, H. Bolink, Aust. J. Chem. 65(9), 1244 (2012)

    Article  Google Scholar 

  4. S. Lou, J. Yu, J. Qian, Y. Jiang, Q. Zhang, H. Xu, L. Sun, Luminescence 23(6), 424 (2008)

    Article  Google Scholar 

  5. M. Ozdemir, D. Choi, G. Kwon, Y. Zorlu, B. Cosut, H. Kim, H. Usta, ACS Appl. Mater. Interfaces 8,14077 (2016)

    Article  Google Scholar 

  6. D. Zhou, K. Chen, X. Zhong, M. Li, Y. Qin, Y. Zhao, J. Mater. Sci.: Mater. Electron. 27, 9920 (2016)

    Google Scholar 

  7. P. Ruankham, T. Sagawa, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8932-4

    Google Scholar 

  8. S. Kim, Q. Zheng, G.S. He, D.J. Bharali, H.E. Pudavar, A. Baev, P.N. Prasad, Adv. Funct. Mater. 16, 2317 (2006)

    Article  Google Scholar 

  9. Y.A. Sonawane, R.N. Rajule, G.S. Shankarling, Monatsh. Chem. 141, 1145 (2010)

    Article  Google Scholar 

  10. K.A. Vishnumurthy, M.S. Sunitha, A.V. Reji Philip, Adhikari, React. Funct. Polym. 71, 1119 (2001)

    Article  Google Scholar 

  11. B. Liu, W. Wu, B. Peng, Y. Liu, Y. He, Ch Pan, Y. Zou, Polym. Chem. 1, 678 (2010)

    Article  Google Scholar 

  12. B. Hemavathi, T.N. Ahipa, S. Pillai, R.K. Paj, Data Brief 7, 1314 (2016)

    Article  Google Scholar 

  13. C.B. Thompson, Y.-G. Kim, T.D. McCarley, J.R. Reynolds, J. Am. Chem. Soc. 128, 12714 (2006)

    Article  Google Scholar 

  14. H. Cha, H. Nam Kim, T.K. An, M.S. Kang, S.K. Kwon, Y.H. Kim, C.E. Park, ACS Appl. Mater. Interfaces 6, 15774 (2014)

    Article  Google Scholar 

  15. M.A. Fox, Chem. Rev. 92, 365 (1992)

    Article  Google Scholar 

  16. N.K. Desai, T.D. Dongale, G.B. Kolekar, S.R. Patil, J. Mater. Sci.: Mater. Electron. 28, 5116 (2017)

    Google Scholar 

  17. B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124, 14410 (2002)

    Article  Google Scholar 

  18. K. Mahesh, S. Karpagam, J. Fluoresc. 26, 1457 (2016)

    Article  Google Scholar 

  19. A. Nowakowska-Oleksy, J. Cabaj, K. Olech, J. Soloducho, S. Roszak, J. Fluoresc. 21, 1625 (2011)

    Article  Google Scholar 

  20. K. Panthi, P.Z. El-Khoury, A.N. Tarnovsky, T.H. Kinstle, D.K. Sreenivas, R. Nagarajan, Tetrahedron 66, 9641 (2010)

    Article  Google Scholar 

  21. B. Yao, X. Zhou, X. Ye, J. Zhang, D. Yang, D. Ma, X. Wan, Org. Electron. 26, 305 (2015)

    Article  Google Scholar 

  22. D. Liu, L. Sun, Z. Du, M. Xiao, C. Gu, T. Wang, S. Wen, M. Sun, R. Yang, RSC Adv. 4, 37934 (2014)

    Article  Google Scholar 

  23. V. Jerca, F.A. Nicolescu, A. Baran, D.F. Anghel, D.S. Vasilescu, D.M. Vuluga, React. Funct. Polym. 70, 827 (2010)

    Article  Google Scholar 

  24. B. Balasaravanan, R. Duraimurugan, K. Sivamani, J. Thiagarajan, A. Siva, New J. Chem. 39(9), 7472 (2015)

    Article  Google Scholar 

  25. S.N. Chavan, R.B. Toche, S.M. Chavan, J. Fluoresc. 27, 443 (2017)

    Article  Google Scholar 

  26. E.A. Aleman, C.D. Silva, E.M. Patrick, K.M. Forsyth, D. Rueda, J. Phys. Chem. Lett. 5, 777 (2014)

    Article  Google Scholar 

  27. H. Iranfar, O. Rajabi, R. Salari, J. Chamani, J. Phys. Chem. B 116, 1951 (2012)

    Article  Google Scholar 

  28. Z. Sattar, M.R. Saberi, J. Chamani, PLoS ONE 9, 84045 (2004)

    Article  Google Scholar 

  29. Z. Sattar, H. Iranfar, A. Asoodeh, M.R. Saberi, M. Mazhari, J. Chamani, Spectrochim. Acta A 97, 1089 (2012)

    Article  Google Scholar 

  30. S. Sarzehi, J. Chamni, Int. J. Biol. Macromol. 47, 558 (2010)

    Article  Google Scholar 

  31. S. Karpagam, S. Guhanathan, P. Sakthivel, Fiber. Polym. 13, 1105 (2012)

    Article  Google Scholar 

  32. A. Upadhyay, S. Karpagam, J. Fluoresc. 26, 439 (2016)

    Article  Google Scholar 

  33. S. Selvakumar, K. Sivaji, A.A. Chakkaravarthi, S. Sankar, Mater. Lett. 61, 4718 (2007)

    Article  Google Scholar 

  34. A.T.R. Williams, S.A. Winfield, J.N. Miller, Analyst 108, 1067 (1983)

    Article  Google Scholar 

  35. D. Collado, J. Casado, S.R. González, J.T.L. Navarrete, R. Suau, E. Perez-Inestrosa, M.M.M. Raposo, Chem. Eur. J. 17(2), 498 (2011)

    Article  Google Scholar 

  36. J. Qu, N.G. Pschirer, D. Liu, A. Stefan, F.C. De Schryver, K. Müllen, Chem. Eur. J. 10(2), 528 (2004)

    Article  Google Scholar 

  37. H.M. Kim, M.S. Seo, S.J. Jeon, B.R. Cho, Chem. Commun. 47, 7422 (2009)

    Article  Google Scholar 

  38. X.T. Hao, L.J. McKimmie, T.A. Smith, J. Phys. Chem. Lett. 2(13), 1520 (2011)

    Article  Google Scholar 

  39. A. Upadhyay, S. Karpagam, J. Photopolym. Sci. Technol. 28, 755 (2015)

    Article  Google Scholar 

  40. B. Chinna, S.K. Lee, K. Pranav, B. Sachin, N.S. Belavagi, I.A.M. Khazi, Y. Kang, J. Fluoresc. 26, 1045 (2016)

    Article  Google Scholar 

  41. D. Passeri, M. Rossi, E. Tamburri, M.L. Terranova, Anal. Bioanal. Chem. 405, 1463 (2013)

    Article  Google Scholar 

  42. P. Zhou, D. Dang, J. Fan, W. Xiong, C. Yang, H. Tan, Y. Wang, Y. Liu, W. Zhu, Dyes Pigments 112, 99 (2015)

    Article  Google Scholar 

  43. S. Sohn, B.H. Koh, J.Y. Baek, H.C. Byun, J.H. Lee, D.S. Shin, Y.H. Kim, Dyes Pigments 140, 14 (2017)

    Article  Google Scholar 

  44. C. Gao, B. Qu, Z. Jiang, D. Tian, H. Liu, Z. Chen, Q. Gong, Synth. Met. 161(9), 864 (2011)

    Article  Google Scholar 

  45. J.A. Mikroyannidis, S.S. Sharma, Y.K. Vijay, G.D. Sharma, ACS Appl. Mater. Interfaces 2, 270 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DST-SERB, New Delhi (Grant No. SB/FT/CS-140/2013). The authors are grateful to DST/VIT-FIST, VIT University for providing instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karpagam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, A.S.V., Mahesh, K., Priyanka, V. et al. Aggregation induced enhanced emission of diphenylamine and pyridine based conjugated organic materials. J Mater Sci: Mater Electron 29, 10949–10961 (2018). https://doi.org/10.1007/s10854-018-9173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9173-2

Navigation