Skip to main content
Log in

Influence of Gd3+ on the Optical Properties of Dy3+-Activated CaF2 Single Crystal for White LED Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The spectroscopic properties of 0.6%Dy:Ca1−xGdxF2+x (x = 0.003, 0.006, 0.012, 0.03) crystals were investigated and compared. The energy transfer process between Gd3+ and Dy3+ was also studied. Increasing the proportions of Gd3+ ions could enhance the visible emission intensity significantly for the blue (478 nm) and yellow (573 nm) emissions; the intensity of the yellow emission was especially increased to be 77 times greater than the 0.6%Dy:CaF2 crystal. Gd3+ ions were not only used to enhance the emission intensity, but also played an important role in regulating the local lattice structure of Dy3+ ions. As a consequence, tunable white-light emission colors could be obtained by adjusting the doping concentration of Gd3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fasol and S. Nakamura, The Blue Laser Diode: GaN Based Blue Light Emitters and Lasers (New York: Springer, 1997).

    Google Scholar 

  2. S.Y. Luo, X.G. Yan, Q. Cui, B. Xu, H.Y. Xu, and Z.P. Cai, Opt. Commun. 380, 357 (2016).

    Article  Google Scholar 

  3. D. Pabœuf, O. Mhibik, F. Bretenaker, P. Goldner, D. Parisi, and M. Tonelli, Opt. Lett 36, 280 (2011).

    Article  Google Scholar 

  4. J. McKittrick and L.E. Shea-Rohwer, J. Am. Ceram. Soc. 97, 1327 (2014).

    Article  Google Scholar 

  5. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, and Q.Y. Zhang, J. Mater. Sci. Eng. R 71, 1 (2010).

    Article  Google Scholar 

  6. X. Li, J.D. Budai, F. Liu, J.Y. Howe, J. Zhang, X.J. Wang, Z. Gu, C. Sun, R.S. Meltzer, and Z. Pan, Light. Sci. Appl. 2, e50 (2013).

    Article  Google Scholar 

  7. W.B. Park, S.P. Singh, and K.S. Sohn, J. Am. Chem. Soc. 136, 2363 (2014).

    Article  Google Scholar 

  8. Z. Xia, R.S. Liu, K.W. Huang, and V. Drozd, J. Mater. Chem. 22, 15183 (2012).

    Article  Google Scholar 

  9. F. Tokimasa and M. Suedomi, Jpn. J. Crop 40, 241 (1971).

    Article  Google Scholar 

  10. R. Ishikawa, S. Tamaki, S. Yokoi, N. Inagaki, T. Shinomura, M. Takano, and K. Shimamoto, Plant. Cell 17, 3326 (2005).

    Article  Google Scholar 

  11. T. Nakajima and T. Tsuchiya, ACS. Appl. Mater. Interfaces 38, 21398 (2015).

  12. J. Long, F. Chu, Y. Wang, C. Chao, W. Dong, X. Yuan, C. Ma, Z. Wen, R. Ma, M. Du, and Y. Cao, J. Inorg. Chem 56, 10381 (2017).

    Article  Google Scholar 

  13. N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).

    Article  Google Scholar 

  14. A. Latynina, M. Watanabe, D. Inomata, K. Aoki, Y. Sugahara, E.G. Vílloraa, and K. Shimamura, J. Alloys Compd. 553, 89 (2013).

    Article  Google Scholar 

  15. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, and M. Nakatsuka, in Materials Science and Engineering Conference (2009), p. 012031.

  16. T. Ishikawa, S. Sakata, and A. Mitani, Int. J. Appl. Ceram. Technol. 3, 144 (2006).

    Article  Google Scholar 

  17. S.L. Dressler, R.N.R. Rauch, and D.I.R. Reimann, Cryst. Res. Technol. 27, 413 (1992).

    Article  Google Scholar 

  18. P. Camy, J.L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorgé, Appl. Phys. B 89, 539 (2007).

    Article  Google Scholar 

  19. P.A. Popov, P.P. Fedorov, S.V. Kuznetsov, V.A. Konyushkin, V.V. Osiko, and T.T. Basiev, Dokl. Phys. 53, 413 (2008).

    Article  Google Scholar 

  20. N. Kumam, N.P. Singh, L.P. Singh, and S.K. Srivastava, Nanoscale Res. Lett. 10, 347 (2015).

    Article  Google Scholar 

  21. P.J. Bendall, C.R.A. Catlow, J. Corish, and P.W.M. Jacobs, J. Solid State Chem. 51, 159 (1984).

    Article  Google Scholar 

  22. Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, and F. Zou, J. Alloys Compd. 192, 25 (1993).

    Article  Google Scholar 

  23. H. Yu, X.B. Qian, L.Y. Guo, D.P. Jiang, Q.H. Wu, F. Tang, L.B. Su, Q.W. Ju, J.Y. Wang, and J. Xu, Opt. Mater. 78, 88 (2018).

    Article  Google Scholar 

  24. A. Braud, D. Serrano, J.L. Doualan, P. Camy, and R. Moncorgé, J. Opt. Soc. Am. B 29, 1854 (2012).

    Article  Google Scholar 

  25. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J.L. Doualan, and R. Moncorgé, Opt. Lett. 29, 2767 (2004).

    Article  Google Scholar 

  26. B. Lacroix, C. Genevois, J.L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, Phys. Rev. B 90, 125137 (2014).

    Article  Google Scholar 

  27. J.L. Doualan, P. Camy, R. Moncorgé, E. Daran, M. Couchaud, and B. Ferrand, J. Fluorine Chem. 128, 459 (2007).

    Article  Google Scholar 

Download references

Funding

The work was supported by the National Science Foundation of China (Nos. 61635012 and U183010005), the Strategic Priority Program of the Chinese Academy of Sciences of XDB16030000, and Shanghai Science and Technology Commission (Nos. 16520721300 and 18520744300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbi Su.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Su, L., Qian, X. et al. Influence of Gd3+ on the Optical Properties of Dy3+-Activated CaF2 Single Crystal for White LED Application. J. Electron. Mater. 48, 2910–2915 (2019). https://doi.org/10.1007/s11664-019-07014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07014-y

Keywords

Navigation