Skip to main content

Advertisement

Log in

Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conducting oxides are materials characterized by the simultaneous occurrence of high optical transparency and electrical conductivity. Among them, tin-doped indium oxide (ITO) has been established as the best material with these criteria. This work focused on the enhancement of the electrical conductivity of ITO thin films through reactive DC sputtering under a hydrogen plasma. The films were deposited on heated substrates (350 °C) with the hydrogen concentration varying from 0 to 20% of the flow rate of argon. The structural properties (crystalline orientation and surface roughness) varied as functions of the hydrogen concentration. The electrical resistivity reached a minimum value of 2.0 × 10−4 Ω cm for a hydrogen concentration of 15%, corresponding to a reduction by a factor of 4 compared to the films deposited without hydrogen. The optical band gap of the films was 4 eV, and was not affected by the hydrogen concentration. The average visible transmittance decreased as the hydrogen concentration increased but maintained a value above 80%. The infrared reflectance increased upon hydrogenation, shifting the plasmon frequency into the near-infrared spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Dixit, C. Sudakar, R. Naik, V.M. Naik, G. Lawes, Undoped vacuum annealed In2O3 thin films as a transparent conducting oxide. Appl. Phys. Lett. 95, 192105 (2009)

    Google Scholar 

  2. S. Marikkannu, C. Sanjeeviraja, S. Piraman, A. Ayeshamariam, Studies on the structural, optical, and electrical properties of jet-nebulized spray pyrolysis ITO thin films. J. Mater. Sci: Mater. Electron. 26, 2531–2537 (2015)

    CAS  Google Scholar 

  3. H. Taha, D.J. Henry, C.-Y. Yin, A. Amri, X. Zhao, S. Bahri, C. Le Minh, N.N. Ha, M.M. Rahman, Z.-T. Jiang, Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin films. J. Alloys Compd. 721, 333–346 (2017)

    CAS  Google Scholar 

  4. S. Seong, Y.C. Jung, T. Lee, I.-S. Park, J. Ahn, Enhanced uniformity in electrical and optical properties of ITO thin films using a wide thermal annealing system. Mater. Sci. Second. Proc. 79, 14–19 (2018)

    CAS  Google Scholar 

  5. M.J. Alam, D.C. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films 377–378, 455–459 (2000)

    Google Scholar 

  6. O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D: Appl. Phys. 43, 055402 (2010)

    Google Scholar 

  7. M.S. Poorali, M.M. Bagheri Mohagheghi, Effect of the graphene doping level on the electrical and optical properties of indium tin oxide (ITO) films prepared by spray pyrolysis. J. Mater. Sci.: Mater. Electron. 27, 10411–10420 (2016)

    CAS  Google Scholar 

  8. Y.J. Yoon, S.H. Cho, B. Kim, Effects of electron irradiation during the growth of ITO films by an using RF sputtering system. J. Kor. Phys. Soc. 69, 1236–1241 (2016)

    CAS  Google Scholar 

  9. D. Alonso-Alvarez, L.F. Llin, A. Mellor, D.J. Paul, N.J. Ekins-Daukes, ITO and AZO films for low emissivity coatings in hybrid photovoltaic thermal applications. Sol. Energy 155, 82–92 (2017)

    CAS  Google Scholar 

  10. A.H. Ali, Z. Hassan, A. Shuhaimi, Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si. Appl. Surf. Sci. 443, 544–547 (2018)

    CAS  Google Scholar 

  11. H. Khachatryan, D.-J. Kim, M. Kim, H.-K. Kimd, Roll-to-roll fabrication of ITO thin film for flexible optoelectronics applications: the role of post-annealing. Mater. Sci. Semicond. Process. 88, 51–56 (2018)

    CAS  Google Scholar 

  12. Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum 75, 183–188 (2004)

    CAS  Google Scholar 

  13. L. Kerkache, A. Layadi, E. Dogheche, D. Remiens, Physical properties of RF sputtered ITO thin films and annealing effect. J. Phys. D: Appl. Phys. 39, 184–189 (2006)

    CAS  Google Scholar 

  14. A.P. Amalathas, M.M. Alkaisi, Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci.: Mater. Electron. 27, 11064–11071 (2016)

    CAS  Google Scholar 

  15. M. Shakib, A. Kosarian, E. Farshidi, Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci.: Mater. Electron. 28, 787–797 (2017)

    Google Scholar 

  16. A. Lebbadi, L. Kerkache, A. Layadi, F. Leroy, B. Alshehri, E. Dogheche, Surface morphology, structural and electrical properties of RF-sputtered ITO thin films on Si substrates. Bull. Mater. Sci. 41, 74 (2018)

    Google Scholar 

  17. L. Wen, B.B. Sahu, J.G. Han, Approach for the optimization of characteristic properties of very high conductive ITO thin films using advanced magnetron plasma process. Mater. Res. Express 5, 066415 (2018)

    Google Scholar 

  18. X. Zhao, H. Li, K. Yang, S. Jiang, H. Jiang, W. Zhang, Annealing effects in ITO based ceramic thin film thermocouples. J. Alloys Compd. 698, 147–151 (2017)

    CAS  Google Scholar 

  19. M. Mirzaee, A. Dolati, Effects of tin valence on microstructure, optical, and electrical properties of ITO thin films prepared by sol–gel method. J. Sol–Gel Sci. Technol. 75, 582–592 (2015)

    CAS  Google Scholar 

  20. J.L. Poole, Y. Yu, P.R. Ohodnicki, Probing the hydrogen enhanced near-field emission of ITO without a vacuum-gap. Sci. Rep. 7, 9518 (2017)

    Google Scholar 

  21. A.B. Chebotareva, G.G. Untila, T.N. Kost, S. Jorgensen, A.G. Ulyashin, ITO deposited by pyrosol for photovoltaic applications. Thin Solid Films 515, 8505–8510 (2007)

    CAS  Google Scholar 

  22. A.H. Sofi, M.A. Shah, K. Asokan, Structural, optical and electrical properties of ITO thin films. J. Electronic Mater. 47, 1344–1352 (2018)

    CAS  Google Scholar 

  23. J. George, C.S. Menon, Electrical and optical properties of electron beam evaporated ITO thin films. Surf. Coat. Technol. 132, 45–48 (2000)

    CAS  Google Scholar 

  24. S.H. Kim, N.-M. Park, T.Y. Kim, G.Y. Sung, Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt%. SnO2-doped In2O3 ceramic target. Thin Solid Films 475, 262–266 (2005)

    CAS  Google Scholar 

  25. C. Kim, J.-W. Park, J. Kim, S.-J. Hong, M.J. Lee, A highly efficient indium tin oxide nanoparticles (ITO-NPs) transparent heater based on solution-process optimized with oxygen vacancy control. J. Alloys Compd. 726, 712–719 (2017)

    CAS  Google Scholar 

  26. J.-H. Kim, H.-J. Seok, H.-J. Seo, T.-Y. Seong, J.H. Heo, S.-H. Lim, K.-J. Ahn, H.-K. Kim, Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 10, 20587–20598 (2018)

    CAS  Google Scholar 

  27. V. Teixeira, H.N. Cui, L.J. Meng, E. Fortunato, R. Martins, Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 420–421, 70–75 (2002)

    Google Scholar 

  28. H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F.G. Akca, G. Aygun, L. Ozyuzer, Improvement of optical and electrical properties of ITO thin films by electro-annealing. Vacuum 120, 8–13 (2015)

    CAS  Google Scholar 

  29. A. Valla, P. Carroy, F. Ozanne, D. Munoz, Understanding the role of mobility of ITO films for silicon heterojunction solar cell applications. Sol. Energy Mater. Sol. Cells 157, 874–880 (2016)

    CAS  Google Scholar 

  30. K.P. Sibin, N. Swain, P. Chowdhury, A. Dey, N. Sridhara, H.D. Shashikala, A. Kumar Sharma, H.C. Barshilia, Optical and electrical properties of ITO thin films sputtered on flexible FEP substrate as passive thermal control system for space applications. Sol. Energy Mater. Sol. Cells 145, 314–322 (2016)

    CAS  Google Scholar 

  31. Y. Zhang, P. Cheng, K. Yu, X. Zhao, G. Ding, ITO film prepared by ion beam sputtering and its application in high-temperature thermocouple. Vacuum 146, 31–34 (2017)

    CAS  Google Scholar 

  32. C. David, B.P. Tinkham, P. Prunici, A. Panckow, Highly conductive and transparent ITO films deposited at low temperatures by pulsed DC magnetron sputtering from ceramic and metallic rotary targets. Surf. Coat. Technol. 314, 113–117 (2017)

    CAS  Google Scholar 

  33. J.-H. Kim, T.-Y. Seong, K.-J. Ahn, K.-B. Chung, H.-J. Seok, H.-J. Seo, H.-K. Kim, The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 440, 1211–1218 (2018)

    CAS  Google Scholar 

  34. T. Arockiadoss, M. Kovendhan, D.P. Joseph, A.S. Kumar, B.C. Choi, K.S. Shim, DC magnetron sputtered aligned ITO nano-rods with the influence of varying oxygen pressure. Appl. Surf. Sci. 449, 39–47 (2018)

    CAS  Google Scholar 

  35. Z. Shi, L. Song, T. Zhang, Terahertz reflection and visible light transmission of ITO films affected by annealing temperature and applied in metamaterial absorber. Vacuum 149, 12–18 (2018)

    CAS  Google Scholar 

  36. M. Ando, E. Nishimura, K. Onisawa, T. Minemura, Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium-tin-oxide films. J. Appl. Phys. 93, 1032–1038 (2003)

    CAS  Google Scholar 

  37. E. Nishimura, H. Ohkawa, P.K. Song, Y. Shigesato, Microstructures of ITO films deposited by d.c. magnetron sputtering with H2O introduction. Thin Solid Films 445, 235–240 (2003)

    CAS  Google Scholar 

  38. S.N. Luo, A. Kono, N. Nouchi, F. Shojib, Effective creation of oxygen vacancies as an electron carrier source in tin-doped indium oxide films by plasma sputtering. J. Appl. Phys. 100, 113701 (2006)

    Google Scholar 

  39. U. Betz, M.K. Olsson, J. Marthy, M.F. Escola, On the synthesis of ultra smooth ITO thin films by conventional direct current magnetron sputtering. Thin Solid Films 516, 1334–1340 (2008)

    CAS  Google Scholar 

  40. S. Luo, K. Okada, S. Kohiki, F. Tsutsui, H. Shimooka, F. Shoji, Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments. Mater. Lett. 63, 641–643 (2009)

    CAS  Google Scholar 

  41. S. Luo, S. Kohiki, K. Okada, F. Shoji, T. Shishido, Hydrogen effects on crystallinity, photoluminescence, and magnetization of indium tin oxide thin films sputter-deposited on glass substrate without heat treatment. Phys. Stat. Sol. A 207, 386–390 (2010)

    CAS  Google Scholar 

  42. K. Okada, S. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri, F. Shoji, Correlation between resistivity and oxygen vacancy of hydrogen-doped indium tin oxide thin films. Thin Solid Films 519, 3557–3561 (2011)

    CAS  Google Scholar 

  43. S. Mandal, S. Mitra, S. Dhar, H. Ghosh, C. Banerjee, S.K. Datta, H. Saha, Potential of ITO nanoparticles formed by hydrogen treatment in PECVD for improved performance of back grid contact crystalline silicon solar cell. Appl. Surf. Sci. 349, 116–122 (2015)

    CAS  Google Scholar 

  44. A. Kosarian, M. Shakiba, E. Farshidi, Role of hydrogen treatment on microstructural and optoelectrical properties of amorphous ITO thin films deposited by reactive gas-timing DC magnetron sputtering. J. Mater. Sci.: Mater. Electron. 28, 10525–10534 (2017)

    CAS  Google Scholar 

  45. M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Effect of substrate temperature on the growth of ITO thin films. Appl. Surf. Sci. 252, 1430–1435 (2005)

    CAS  Google Scholar 

  46. C. Guillen, J. Herrero, Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates. Thin Solid Films 480–481, 129–132 (2005)

    Google Scholar 

  47. C. Guillen, J. Herrero, Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin Solid Films 510, 260–264 (2006)

    CAS  Google Scholar 

  48. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, R. Martins, Role of hydrogen plasma on electrical and optical properties of ZGO ITO and IZO transparent and conductive coatings. Thin Solid Films 511–512, 295–298 (2006)

    Google Scholar 

  49. R. Das, K. Adhikary, S. Ray, The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering. Appl. Surf. Sci. 253, 6068–6073 (2007)

    CAS  Google Scholar 

  50. S.-H. Yang, D.-M. Lee, J.-K. Kim, J.-W. Kang, J.-M. Lee, Enhanced optical and electrical properties of ITO on a PET substrate by hydrogen plasma and HCl treatment. J. Phys. D: Appl. Phys. 46, 125103 (2013)

    Google Scholar 

  51. H.K. Jeoung, K.M. Lee, Effects of flow rate of oxygen and hydrogen gases on characteristics of ITO thin films for OLEDs. Mater. Technol. Adv. Perform. Mater. 29, A34–A39 (2014)

    CAS  Google Scholar 

  52. Z. Fan, J.-L. Maurice, W. Chen, S. Guilet, E. Cambril, X. Lafosse, L. Couraud, K. Merghem, L. Yu, S. Bouchoule, P.R. Cabarrocas, On the mechanism of in nanoparticle formation by exposing ITO thin films to hydrogen plasmas. Langmuir 33, 12114–12119 (2017)

    CAS  Google Scholar 

  53. L. Alvarez-Fraga, F. Jimenez-Villacorta, J. Sanchez-Marcos, A. de Andrés, C. Prieto, Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture. Appl. Surf. Sci. 344, 217–222 (2015)

    CAS  Google Scholar 

  54. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D.E. Aspnes, J.-P. Maria, S. Franzen, Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 093108 (2008)

    Google Scholar 

  55. P.C. Srivastava, U.P. Singh, Hydrogen in semiconductors. Bull. Mater. Sci. 19, 51–60 (1996)

    CAS  Google Scholar 

  56. S.J. Pearton, J.W. Corbett, T.S. Shi, Hydrogen in crystalline semiconductors. Appl. Phys. A 43, 153–195 (1987)

    Google Scholar 

  57. M.D. McCluskey, M.C. Tarun, S.T. Teklemichael, Hydrogen in oxide semiconductors. J. Mater. Res. 27, 2190–2198 (2012)

    CAS  Google Scholar 

  58. P.D.C. King, R.L. Lichti, Y.G. Celebi, J.M. Gil, R.C. Vilao, H.V. Alberto, J. Piroto Duarte, D.J. Payne, R.G. Egdell, I. McKenzie, C.F. McConville, S.F.J. Cox, T.D. Veal, Shallow donor state of hydrogen in In2O3 and SnO2: implications for conductivity in transparent conducting oxides. Phys. Rev. B 80, 081201 (2009)

  59. H.Y. Noh, J. Kim, J.-S. Kim, M.-J. Lee, H.-J. Lee, Role of hydrogen in active layer of oxide-semiconductor-based thin film transistors. Crystals 9, 75 (2019)

    Google Scholar 

  60. T.-C. Lin, S.-C. Chang, C.-F. Chiu, Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere. Mater. Sci. Eng. B 129, 39–42 (2006)

    CAS  Google Scholar 

  61. J. Lee, D. Lim, K. Yang, W. Choi, Influence of different plasma treatments on electrical and optical properties on sputtered AZO and ITO films. J. Cryst. Growth 326, 50–57 (2011)

    CAS  Google Scholar 

  62. A.M. Goodman, Optical interference method for the approximate determination of refractive index and thickness of a transparent layer. Appl. Opt. 17, 2779–2787 (1978)

    CAS  Google Scholar 

  63. O.S. Heavens, Optical Properties of This Solid Films, Dover 1991, p. 78.

  64. B. Lv, L. Huang, M. Fu, F.M. Zhang, X.S. Wu, Effects of oxidation and CdCl2 treatment on the electronic properties of CdTe polycrystalline films. Mater. Chem. Phys. 165, 49–54 (2015)

    CAS  Google Scholar 

  65. C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002)

    CAS  Google Scholar 

  66. M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal, The relationship between optical inhomogeneity and film structure. Thin Solid Films 57, 17–178 (1979)

    Google Scholar 

  67. R.J. Moreland, J.P. Hoogenboom, Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica 3, 112–117 (2016)

    Google Scholar 

  68. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Physics Department of King Fahd University of Petroleum and Minerals. The assistance of Dr. M. B. Haider with AFM imaging is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Al-Kuhaili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kuhaili, M.F. Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma. J Mater Sci: Mater Electron 31, 2729–2740 (2020). https://doi.org/10.1007/s10854-019-02813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02813-9

Navigation