Skip to main content
Log in

Role of hydrogen treatment on microstructural and opto-electrical properties of amorphous ITO thin films deposited by reactive gas-timing DC magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous indium-tin-oxide (ITO) thin films have been prepared using reactive gas-timing DC magnetron sputtering technique, onto externally unheated glass substrate and without any heat treatment. In order to study the effect of hydrogen on the microstructural and optoelectrical properties of the ITO films, an additional hydrogen input line is added to the sputtering system and the hydrogen partial flow rate in the plasma gas mixture is varied over the range 0–0.9 sccm, while the other sputtering parameters are kept constant and optimized during the film growth. The optimized parameters are found to be 100 W DC power, 25 mTorr working pressure, and 7 cm electrode spacing. Introduction of the reactive hydrogen into the deposition chamber is achieved using uniform and step profiles. Characterization of the deposited hydrogenated amorphous ITO thin films are made using X-ray diffraction (XRD), atomic force microscopy (AFM), four probe electrical conductivity, photoluminescence (PL), and UV–Visible spectroscopy. A minimum sheet resistance of 8.34 \(\Omega\)/square, transmittance of 81.6% with a Haackes figure of merit of \(15.7 \times {10^{ - 3}}\) \({\Omega ^{ - 1}}\), thickness of 380 nm, and optical band gap of 4.02 eV are obtained for the hydrogenated thin film prepared by uniform introducing profile of hydrogen reactive gas at 0.1 sccm hydrogen flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Koida, H. Fujiwara, M. Kondo, Hydrogen-doped In2O3 as high-mobility transparent conductive oxide. Jpn. J. Appl. Phys. 46, 25–28 (2007)

    Article  Google Scholar 

  2. Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee, J.R. Lee, Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 411, 12–16 (2002)

    Article  Google Scholar 

  3. J.B. Chu, S.M. Huang, H.B. Zhu, X.B. Xu, Z. Sun, Y.W. Chen, F.Q. Huang, Preparation of indium tin oxide thin films without external heating for application in solar cells. J. Non-Cryst. Solids 354, 5480–5484 (2008)

    Article  Google Scholar 

  4. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting transparent thin films (Institute of Physics, Bristol, 1995)

    Google Scholar 

  5. M.G. Varnamkhasti, V. Soleimanian, Microstructure, electrical and optoelectronic characterizations of transparent conductive nanocrystalline In2O3: Sn thin films. J. Mater. Sci.: Mater. Electron. 26, 3223–3230 (2016)

    Google Scholar 

  6. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering. J. Mater. Sci.: Mater. Electron. 24, 467–474 (2013)

    Google Scholar 

  7. G. Zhu, Z. Yang, Effect of sputtering power and annealing temperature on the properties of indium tin oxide thin films prepared from radio frequency sputtering using powder target. J. Mater. Sci.: Mater. Electron. 24, 3646–3651 (2013)

    Google Scholar 

  8. S.D. Senol, A. Senol, O. Ozturk, M. Erdem, Effect of annealing time on the structural, optical and electrical characteristics of DC sputtered ITO thin films. J. Mater. Sci.: Mater. Electron. 25, 4992–4999 (2014)

    Google Scholar 

  9. D.S. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25, 15–18 (2000)

    Article  Google Scholar 

  10. C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002)

    Article  Google Scholar 

  11. S. Lany, A. Zunger, Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 045501 (2007)

    Article  Google Scholar 

  12. S. Luo, K. Okada, S. Kohiki, F. Tsutsui, H. Shimooka, F. Shoji, Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments. Mater. Lett. 63, 641–643 (2009)

    Article  Google Scholar 

  13. S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, Low resistivity indiumtin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 8, 1403 (1990)

    Article  Google Scholar 

  14. S.N. Luo, A. Kono, N. Nouchi, F. Shoji, Effective creation of oxygen vacancies as an electron carrier source in tin-doped indium oxide films by plasma sputtering. J. Appl. Phys. 100, 113701 (2006)

    Article  Google Scholar 

  15. S. Luo, S. Kohiki, K. Okada, F. Shoji, T. Shishido, Hydrogen effects on crystallinity, photoluminescence, and magnetization of indium tin oxide thin films sputter-deposited on glass substrate without heat treatment. Phys. Status Solidi A 207(2), 386–390 (2010)

    Article  Google Scholar 

  16. M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, J.M. Pearce, Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films. AIP Adv. 5, 017128 (2015)

    Article  Google Scholar 

  17. K. Okada, S. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri, F. Shoji, Correlation between resistivity and oxygen vacancy of hydrogen-doped indium tin oxide thin films. Thin Solid Films 519, 3557–3561 (2011)

    Article  Google Scholar 

  18. H. Morikawa, M. Fujita, Crystallization and electrical property change on the annealing of amorphous indium-oxide and indium-tin-oxide thin films. Thin Solid Films 359, 61–67 (2000)

    Article  Google Scholar 

  19. J.H.W. Dewit, G. Vanunen, M. Lahey, Electron concentration and mobility in In2O3. J. Phys. Chem. Solids 38, 819–824 (1977)

    Article  Google Scholar 

  20. J. Wallinga, W.M. Arnold Bik, A.M. Vredenberg, R.E.I. Schropp, W.F. van der Weg, Reduction of tin oxide by hydrogen radicals. J. Phys. Chem. B 102, 6219–6224 (1998)

    Article  Google Scholar 

  21. S. Luo, S. Kohiki, K. Okada, A. Kohno, T. Tajiri, M. Arai, S. Ishii, D. Sekiba, M. Mitome, F. Shoji, Effects of hydrogen in working gas on valence states of oxygen in sputter-deposited indium tin oxide thin films. ACS Appl. Mater. Interfaces 2, 663–668 (2010)

    Article  Google Scholar 

  22. M. Shakiba, A. Kosarian, E. Farshidi, Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci.: Mater. Electron. 28, 787–797 (2017). doi:10.1007/s10854-016-5591-1

    Google Scholar 

  23. A.E.H.B. Kashyout, M. Fathy, M.B. Soliman, Studying the properties of RF-sputtered nanocrystallinetin-doped indium oxide. Int. J. Photoenergy 2011, 6 (2011)

    Article  Google Scholar 

  24. Y. Chen, Y. Zhou, Q. Zhang, M. Zhu, F. Liu, The correlation between preferred orientation and performance of ITO thin films. J. Mater. Sci.: Mater. Electron. 18, S411–S414 (2007)

    Google Scholar 

  25. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967, Card 6-0416

  26. F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, Effects of stress on the structure of indium-tin oxide thin films grown by pulsed laser deposition. J. Mater. Sci.: Mater. Electron. 12, 57–61 (2001)

    Google Scholar 

  27. P. Nath, R.F. Bunshah, B.M. Basol, O.M. Staffsud, Electrical and optical properties of In2O3: Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463–468 (1980)

    Article  Google Scholar 

  28. S. Honda, A. Tsujimoto, Depth profiling of oxygen concentration of indium tin oxide films fabricated by reactive sputtering. Jpn. J. Appl. Phys. 33, 9A (1994)

    Article  Google Scholar 

  29. K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 86, 974 (1999)

    Article  Google Scholar 

  30. A. Dixit, C. Sudakar, R. Naik, V.M. Naik, G. Lawes, Undoped vacuum annealed In2O3 thin films as a transparent conducting oxide. Appl. Phys. Lett. 95, 192105 (2009)

    Article  Google Scholar 

  31. T. Ohno, T. Kawahara, H. Tanaka, T. Kawai, M. Oku, K. Okada, S. Kohiki, Ferromagnetism in transparent thin films of Fe-doped indium tin oxide. J. Appl. Phys. 45, 33–36 (2006)

    Article  Google Scholar 

  32. M. Ando, E. Nishimura, K.-I. Onisawa, T. Minemura, Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium-tin-oxide films. J. Appl. Phys. 93, 1032 (2003)

    Article  Google Scholar 

  33. V.G. Karpov, Nucleation in disordered media. Phys. Rev. B 50, 9124 (1994)

    Article  Google Scholar 

  34. A.B. Pevtsov, V.Y. Davydov, N.A. Feoktistov, V.G. Karpov, Nanoscale-crystallite nucleation and growth in amorphous solids. Phys. Rev. B 52, 955 (1994)

    Article  Google Scholar 

  35. X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires. Chem. Phys. Lett. 373, 28–32 (2003)

    Article  Google Scholar 

  36. M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, X.F. Wang, Ordered indium-oxide nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 79, 839 (2001)

    Article  Google Scholar 

  37. S. Kar, S. Chaudhuri, Synthesis, photoluminescence and field emission properties of In2O3 nanowires. Chem. Phys. Lett. 422, 424–428 (2006)

    Article  Google Scholar 

  38. P. Guha, S. Kar, S. Chaudhuri, Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties. Appl. Phys. Lett. 85, 3851 (2004)

    Article  Google Scholar 

  39. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Catalytic growth of semiconducting In2O3 nanofibers. Adv. Mater. 13, 1330 (2001)

    Article  Google Scholar 

  40. H.J. Zhou, W.P. Cai, L.D. Zhang, Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica. Appl. Phys. Lett. 75, 495 (1999)

    Article  Google Scholar 

  41. L. Dai, X.L. Chen, J.K. Jian, M. He, T. Zhou, B.Q. Hu, Fabrication and characterization of In2O3 nanowires. Appl. Phys. A 75, 687 (2002)

    Article  Google Scholar 

  42. M.-S. Lee, W.C. Choi, E.K. Kim, C.K. Kim, S.-K. Min, Characterization of the oxidized indium thin films with thermal oxidation. Thin Solid Films 279, 1–3 (1996)

    Article  Google Scholar 

  43. D.K. Shroder, Semiconductor material and device characterization (Wiley, New York, 1990)

    Google Scholar 

  44. J.I. Parkove, Optical process in semiconductors (Dover Publications Inc, New York, 1971)

    Google Scholar 

  45. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Khuzestan Regional Electric Company, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kosarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosarian, A., Shakiba, M. & Farshidi, E. Role of hydrogen treatment on microstructural and opto-electrical properties of amorphous ITO thin films deposited by reactive gas-timing DC magnetron sputtering. J Mater Sci: Mater Electron 28, 10525–10534 (2017). https://doi.org/10.1007/s10854-017-6826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6826-5

Keywords

Navigation