Skip to main content
Log in

New negative temperature coefficient ceramics in La-doped CaCu3Ti4O12 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ca1−xLaxCu3Ti4O12 (0 ≤ x ≤ 0.3) ceramics have been successfully prepared by the traditional solid-state reaction method at 1090 °C for 10 h. Effects of La3+ doping on the structure and negative temperature coefficient electrical properties of Ca1−xLaxCu3Ti4O12 ceramics are investigated in detail. Scanning electron microscope images demonstrate that the grain size of ceramic samples decreases with the increasing La3+ content. X-ray photoelectron spectroscopy analysis further confirms the coexistence of Cu+/Cu2+ and Ti3+/Ti4+ ions, which is one of the considerable contributors to the electrical conductivity of Ca1−xLaxCu3Ti4O12 ceramics. All the prepared ceramics show a linear relationship between the natural logarithm of the resistivity and the reciprocal of absolute temperature, indicating NTC characteristics. The obtained values of ρ25, B200/400 and Ea for the thermistors are in the range of 2.00 × 105–5.22 × 107 Ω cm−1, 2644–4205 K, 0.228–0.363 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)

    Article  Google Scholar 

  2. R.N. Jadhav, S.N. Mathad, V. Puri, Ceram. Int. 38, 5181 (2012)

    Article  Google Scholar 

  3. K. Park, S. Yun, J. Mater. Sci.: Mater. Electron. 15, 359 (2004)

    Google Scholar 

  4. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  5. T. Fang, H. Shiau, J. Am. Ceram. Soc. 87, 2072 (2005)

    Article  Google Scholar 

  6. B.S. Prakash, K.B.R. Varma, Phys. B 382, 312 (2006)

    Article  Google Scholar 

  7. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, J.C. Li, M.L. Zhao, Appl. Phys. Lett. 91, 042905 (2007)

    Article  Google Scholar 

  8. Y. Zhu, J.C. Zheng, L. Wu, J. Hanson, P. Northrup, W. Ku, A.I. Frenkel, Phys. Rev. Lett. 99, 037602 (2007)

    Article  Google Scholar 

  9. B.P. Zhu, Z.Y. Wang, Y. Zhang, Z.S. Yu, J. Shi, R. Xiong, Mater. Chem. Phys. 113, 746 (2009)

    Article  Google Scholar 

  10. J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, J. Adv. Dielectr. 06, 1650009 (2016)

    Article  Google Scholar 

  11. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)

    Article  Google Scholar 

  12. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 323 (2007)

    Google Scholar 

  13. N. Lei, M.C. Xiang, J. Am. Ceram. Soc. 93, 184 (2010)

    Article  Google Scholar 

  14. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38, 137 (2018)

    Article  Google Scholar 

  15. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, J. Eur. Ceram. Soc. 38, 3505 (2018)

    Article  Google Scholar 

  16. B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221 (2014)

    Article  Google Scholar 

  17. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Appl. Phys. Lett. 76, 2934 (2000)

    Article  Google Scholar 

  18. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Am. Ceram. Soc. 95, 1497 (2012)

    Article  Google Scholar 

  19. D. Han, J. Zhang, P. Liu, G. Li, S. Wang, J. Eur. Ceram. Soc. 38, 3261 (2018)

    Article  Google Scholar 

  20. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D-Appl. Phys. 42, 55404 (2009)

    Article  Google Scholar 

  21. J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

    Article  Google Scholar 

  22. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  23. A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011)

    Article  Google Scholar 

  24. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem Mater 16, 5223 (2004)

    Article  Google Scholar 

  25. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 474 (2001)

    Article  Google Scholar 

  26. M.A. Ponce, M.A. Ramirez, F. Schipani, E. Joanni, J.P. Tomba, M.S. Castro, J. Eur. Ceram. Soc. 35, 153 (2015)

    Article  Google Scholar 

  27. M.H. Whangbo, M.A. Subramanian, Chem. Mater. 18, 3257 (2006)

    Article  Google Scholar 

  28. W.L. George, R.E. Grace, J. Phys. Chem. Solids 30, 881 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the National Natural Science Foundation of China (Grant No. 61871377) and the West Light Foundation of the Chinese Academy of Sciences (Grant No. 2015-XBQN-B-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhang or Aimin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhang, B. & Chang, A. New negative temperature coefficient ceramics in La-doped CaCu3Ti4O12 system. J Mater Sci: Mater Electron 30, 10217–10223 (2019). https://doi.org/10.1007/s10854-019-01358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01358-1

Navigation