Skip to main content
Log in

Magnetic, Dielectric and Complex Impedance Properties of xBa0.95Sr0.05TiO3–(1 − x)BiFe0.9Gd0.1O3 Multiferroic Ceramics

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

xBa0.95Sr0.05TiO3–(1 − x)BiFe0.9Gd0.1O3 [xBST–(1 − x)BFGO] (x = 0.00, 0.10, 0.20 and 0.25) multiferroic ceramics were prepared by the standard solid-state reaction technique. Structural characterization was performed by X-ray diffraction. All the samples showed rhombohedral distorted perovskite structure. Surface morphology of the ceramics was studied by the field emission scanning electron microscope (FESEM). From the FESEM observation, the grain size was observed to be decreased with increasing BST content. Enhanced magnetic properties were observed in BFGO with the increase in BST content because of large lattice distortion. The complex initial permeability increased with the increasing of BST content. The study of dielectric properties showed that the dielectric constant increased, whereas dielectric loss decreased with increasing of BST content due to the reduction of oxygen vacancies. An analysis of the electric impedance and modulus with frequency was performed at different temperatures. Non-Debye-type relaxation processes occur in the compound which was confirmed from the nature of the Cole–Cole plot. The DC conductivity was found to increase with the rise in temperature which indicates the semiconducting behavior of the compound with characteristics of the negative temperature coefficient of resistance. The activation energy, responsible for the relaxation determined from the modulus spectra (0.246 eV), was found to be almost same as the value obtained from the impedance study (0.240 eV), indicating that charge carriers overcome the same energy barrier during relaxation. The frequency response of imaginary parts of electric impedance and modulus suggested that the relaxation in xBST–(1 − x)BFGO ceramics follows the same mechanism at various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zhai, N. Cai, Z. Shi, Y. Lin, C.W. Nan, J. Phys. D 37, 823 (2004)

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  3. N. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  4. M.M. Kumar, A. Shrinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  5. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  Google Scholar 

  6. T. Kanai, S. Ohkoshi, A. Nakajima, Adv. Mater. 7, 487 (2001)

    Article  Google Scholar 

  7. B. Bochenek, R. Zachariasz, J. Ilczuk, J. Dudek, Acta Phys. 116, 274 (2009)

    Article  Google Scholar 

  8. K.C. Verma, R.K. Kotnala, Solid State Commun. 151, 920 (2011)

    Article  Google Scholar 

  9. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Mater. 14, 120 (2000)

    Google Scholar 

  10. C.X. Li, B. Yang, S.T. Zhang, R. Zang, Y. Sun, H.J. Zang, W.W. Cao, J. Am. Ceram. Soc. 97, 816 (2014)

    Article  Google Scholar 

  11. W. Cai, S. Zhong, C. Fu, G. Chen, X. Deng, Mater. Res. Bull. 50, 259 (2014)

    Article  Google Scholar 

  12. R.A.M. Gotardo, D.S.F. Viana, M.O. Doinysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coetho, J. Appl. Phys. 112, 104112 (2012)

    Article  Google Scholar 

  13. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, J. Yu, Appl. Phys. Lett. 90, 172507 (2007)

    Article  Google Scholar 

  14. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)

    Article  Google Scholar 

  15. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525 (2012)

    Article  Google Scholar 

  16. B. Yu, M. Li, Z. Hu, L. Pei, D. Guo, X. Zhao, S. Dong, Appl. Phy. Lett. 93, 09182909 (2008)

    Google Scholar 

  17. V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, Acta Mater. 57, 5137 (2009)

    Article  Google Scholar 

  18. V.M. Nguyen, G.Q. Nguyen, J. Alloys Compd. 509, 2663 (2009)

    Google Scholar 

  19. S. Zhang, W. Luo, D. Wang, Y. Ma, Mater. Lett. 63, 1820 (2009)

    Article  Google Scholar 

  20. B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, J. Phys. D 42, 065004 (2009)

    Article  Google Scholar 

  21. P. Uniyal, G.S. Lotey, A. Gautam, N.K. Verma, K.L. Yadav, J. Supercond. Nov. Magn. 27, 569 (2014)

    Article  Google Scholar 

  22. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  23. V.M. Godschmidt, Naturwissenschafen 14, 477 (1926)

    Article  Google Scholar 

  24. J.S. Kim, Cheon Chae Il, Y.N. Choi, P.W. Jang. J. Appl. Phys. 93, 9263 (2003)

    Article  Google Scholar 

  25. A.S. Priya, B.I.B. Shameem, S. Anwar, Mater. Lett. 142, 42 (2015)

    Article  Google Scholar 

  26. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, J. Magn. Magn. Mater. 322, 718 (2010)

    Article  Google Scholar 

  27. C. Ederer, N.A. Spaldin, Phys. Rev. B. 71, 060401 (2005)

    Article  Google Scholar 

  28. I. Sosnowska, P.T. Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)

    Article  Google Scholar 

  29. S.A. Ivanov, P. Nordblad, R. Tellgren, C. Ritter, Solid State Sci. 12, 115 (2010)

    Article  Google Scholar 

  30. A. Verma, T.C. Goel, Mendiratta, P. Kishan. J. Magn. Magn. Mater. 208, 13 (2000)

    Article  Google Scholar 

  31. A. Globus, P. Duplex, IEEE Trans. Magn. 2, 441 (1966)

    Article  Google Scholar 

  32. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104 (2007)

    Article  Google Scholar 

  33. A.M. Gama, M.C. Rezende, Mater. Res. 16, 997 (2013)

    Article  Google Scholar 

  34. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D 44, 355402 (2011)

    Article  Google Scholar 

  35. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W.Z. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013)

    Article  Google Scholar 

  36. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  37. H. Abdelkefi, H. Khemakhem, G. Vélu, J.C. Carru, Régnault Von der Mühll. J. Alloys Compd. 399, 1 (2005)

    Article  Google Scholar 

  38. H. Khelifi, M. Zannen, N. Abdelmoula, D. Mezzane, A. Maalej, H. Khemakhem, M. Es-Souni, Ceram. Int. 38, 5993 (2012)

    Article  Google Scholar 

  39. B. Behera, P. Nayak, R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289 (2008)

    Google Scholar 

  40. J.R. MacDonald, Impedance Spectroscopy (Wiley-Interscience, New York, 1987)

    Google Scholar 

  41. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glass. 13, 171 (1972)

    Google Scholar 

  42. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the CASR Grant No. 253(21), Bangladesh University of Engineering and Technology, Bangladesh, for providing financial support for this research. One of the authors M.J. Miah thanks the Ministry of National Science, Information & Communication Technology (NST), Government of the People’s Republic of Bangladesh for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Miah.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miah, M.J., Hossain, A.K.M.A. Magnetic, Dielectric and Complex Impedance Properties of xBa0.95Sr0.05TiO3–(1 − x)BiFe0.9Gd0.1O3 Multiferroic Ceramics. Acta Metall. Sin. (Engl. Lett.) 29, 505–517 (2016). https://doi.org/10.1007/s40195-016-0408-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0408-z

Keywords

Navigation