Skip to main content

Advertisement

Log in

Effect of rare earth on dielectric properties of Mn contained unfilled tungsten bronze ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn contained ceramics with nominal formula Ba4RMn0.5Nb9.5O30 (R = La, Pr, Nd and Eu) were fabricated via a conventional solid−state reaction. The phase structure, microstructure, dielectric and ferroelectric properties of the materials were systematically studied. Ambient temperature XRD patterns indicate that all of the ceramics are single tetragonal tungsten bronze phase with space group P4bm. All of these ceramics present a broad permittivity peak, while only Ba4LaMn0.5Nb9.5O30 exhibits obvious frequency dispersion indicating relaxation. With decreasing A1-site ions size, the maximum dielectric constant temperatures (Tm) gradually increase. The relaxation activation energy and direct current conductivity activation energy of all compounds were obtained by linear fitting with Arrhenius equation. Furthermore, with the increase of the A1-site ions size, the Raman shift moves to a high frequency, indicating that different degrees of lattice distortion. Polarizations versus electric field (PE) loops measured at ambient temperature show that Ba4EuMn0.5Nb9.5O30 has the highest remnant polarization value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Yang, S.L. Hao, P. Yang, L.L. Wei, Z.P. Yang, Ceram. Int. 44, 8832 (2018)

    Article  CAS  Google Scholar 

  2. H. Jiang, Y.M. Hu, X.H. Zhang, M.L. Mu, X.H. Wang, W.Z. Lu, J. Mater. Sci. 30, 4385 (2019)

    CAS  Google Scholar 

  3. J. Gardner, F.D. Morrison, Dalton Trans. 43, 11687 (2014)

    Article  CAS  Google Scholar 

  4. L. Li, B. Yang, X.L. Chao, D. Wu, L.L. Wei, Z.P. Yang, Ceram. Int. 45, 558 (2019)

    Article  CAS  Google Scholar 

  5. P.B. Jamieson, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 48, 5048 (1968)

    Article  CAS  Google Scholar 

  6. X.L. Zhu, K.Y. Zhuang, S.Y. Wu, X.M. Cheng, J. Am. Ceram. Soc. 102, 3438 (2019)

    Article  CAS  Google Scholar 

  7. J.S. Hong, Y.H. Huang, Y.J. Wu, M.S. Fu, J. Li, X.Q. Liu, Am. Ceram. Soc. 102(4), 1748–1757 (2019)

    Article  CAS  Google Scholar 

  8. C.Z. Hu, Z. Sun, Q.H. Zhu, L. Fang, L.J. Liu, J. Mater. Sci. 26, 515 (2015)

    Google Scholar 

  9. X.Z. Zuo, Z.Z. Hui, E.J. He, Y.F. Qin, B.G. Guan, P. Zhang, J. Yang, X.B. Zhu, J.M. Dai, J. Alloys. Compd. 755, 73 (2018)

    Article  CAS  Google Scholar 

  10. Z.J. Yang, W.B. Feng, X.Q. Liu, X.L. Zhu, X.M. Chen, J. Am. Ceram. Soc. 102, 4721 (2019)

    Article  CAS  Google Scholar 

  11. M. Albino, P. Veber, S. Pechev, C. Labrugère, M. Velázquez, M. Maglione, M. Josse, Cryst. Growth Des. 14, 500 (2014)

    Article  CAS  Google Scholar 

  12. C.Z. Hu, L.J. Hou, L. Fang, L.J. Liu, J. Alloys. Compd. 581, 547 (2013)

    Article  CAS  Google Scholar 

  13. X.H. Wang, M.X. Li, C. Zhou, M.J. Wang, W.Z. Lu, Ceram. Int. 40, 39 (2014)

    Article  Google Scholar 

  14. Z. Guo, S. Wu, C.Z. Hu, L.J. Liu, L. Fang, J. Alloys. Compd. 773, 470 (2019)

    Article  CAS  Google Scholar 

  15. Q.Y. Yue, L.H. Luo, X.J. Jiang, W.P. Li, J. Zhou, J. Alloys. Compd. 610, 276 (2014)

    Article  CAS  Google Scholar 

  16. L.X. Zhang, W.F. Liu, W. Chen, X.B. Ren, J. Sun, E.A. Gurdal, S.O. Ural, K. Uchino, Appl. Phys. Lett. 101, 242903 (2012)

    Article  Google Scholar 

  17. W.F. Liu, L.X. Zhang, W. Chen, S.T. Li, X.B. Ren, Appl. Phys. Lett. 99, 092907 (2011)

    Article  Google Scholar 

  18. C.Z. Hu, Z. Guo, S. Wu, Z. Sun, C.C. Li, L.J. Liu, L. Fang, Ceram. Int. 44, S224 (2018)

    Article  CAS  Google Scholar 

  19. Z. Guo, S. Wu, C.Z. Hu, L.J. Liu, L. Fang, Mater. Res. Bull. 114, 18 (2019)

    Article  CAS  Google Scholar 

  20. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  CAS  Google Scholar 

  21. G. Zerihun, G.S. Gong, S. Huang, S.L. Yuan, Curr. Appl. Phys. 16, 843 (2016)

    Article  Google Scholar 

  22. W.B. Feng, X.L. Zhu, X.Q. Liu, M.S. Fu, X. Ma, S.J. Jia, X.M. Chen, J. Am. Ceram. Soc. 101, 1623 (2018)

    Article  CAS  Google Scholar 

  23. C.Z. Hu, Z. Sun, Q.H. Zhu, F.Q. Lu, C.C. Li, L.J. Liu, L. Fang, Ceram. Int. 42, 14999 (2016)

    Article  CAS  Google Scholar 

  24. G. Burns, F.H. Dacol, Solid State Commun. 48, 853 (1983)

    Article  CAS  Google Scholar 

  25. B.N. Parida, P.R. Das, R. Padhee, S. Behera, R.N.P. Choudhary, J. Mater. Sci. 25, 2618 (2014)

    CAS  Google Scholar 

  26. Z. Wang, Y.J. Xiao, T. Wang, Q.L. Wu, J. Alloys. Compd. 740, 1077 (2018)

    Article  CAS  Google Scholar 

  27. S.F. Liu, Y.J. Wu, J. Li, X.M. Chen, Appl. Phys. Lett. 104, 082912 (2014)

    Article  Google Scholar 

  28. Z. Wang, Y.J. Xiao, T. Wang, Q.L. Wu, J. Mater. Sci. 29, 7294 (2018)

    CAS  Google Scholar 

  29. L.J. Liu, M.X. Wu, Y.M. Huang, Z. Yang, L. Fang, C.Z. Hu, Mater. Chem. Phys. 12, 769 (2011)

    Article  CAS  Google Scholar 

  30. X.J. Sun, J.M. Deng, L.J. Liu, S.S. Liu, D.P. Shi, L. Fang, Mater. Res. Bull. 73, 437 (2016)

    Article  CAS  Google Scholar 

  31. M. Miyayama, Y. Noguchi, J. Eur. Ceram. Soc. 25, 2477 (2005)

    Article  CAS  Google Scholar 

  32. H. Huang, X.L. Zhong, S.H. Xie, Y. Zhang, J.B. Wang, Y.C. Zhou, Europhys. Lett. 94, 37002 (2011)

    Article  Google Scholar 

  33. H. Ihrig, D. Hennings, Electrical transport properties of n-type BaTiO3. Phys. Rev. B 17, 4593–4599 (1978)

    Article  CAS  Google Scholar 

  34. W.B. Feng, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 112, 262904 (2018)

    Article  Google Scholar 

  35. Z. Guo, Q.H. Zhu, S. Wu, C.Z. Hu, L.J. Liu, L. Fang, Ceram. Int. 44, 7700 (2018)

    Article  CAS  Google Scholar 

  36. S.M. Ke, H.Q. Fan, H.T. Huang, H.L.W. Chan, S.H. Yu, J. Appl. Phys. 104, 024101 (2008)

    Article  Google Scholar 

  37. F. Abdelli, C. Boudaya, H. Khemakhem, J. Alloys. Compd. 683, 282 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the authors thank the National Natural Science Foundation of China (11564009), Natural Science Foundation of Guangxi (2018GXNSFAA050010, 2013GXNSFBA019230, 2014GXNSFAA118350), and open founding of the Guangxi Ministry-Province Jointly-Constructed Cultivation Base for the State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials (19AA-15, 15KF-12) for financial supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Sun, C., Guo, Z. et al. Effect of rare earth on dielectric properties of Mn contained unfilled tungsten bronze ceramics. J Mater Sci: Mater Electron 30, 17393–17404 (2019). https://doi.org/10.1007/s10854-019-02089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02089-z

Navigation