Skip to main content
Log in

Tunable microwave absorbing property of LaxFeO3/C by introducing A-site cation deficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel two-dimensional electromagnetic (EM) absorbers which consist of LaFeO3 nanoparticles embedded on hierarchical amorphous carbon nanosheets were fabricated by a simple one-pot method. By inducing A-site cation deficiency in LaFeO3 perovskite, the properties of EM absorption were optimized due to the polarization of dipoles between O vacancy and Fe4+. This research is expectant to provide a new strategy for the improved EM absorption performance by inducing the A-site cation deficiency in perovskite crystal lattices. By the magnetic ferrite nanoparticles doped in the dielectric carbon sheets, we got the best La0.8FeO3−y/C possessing larger absorption bandwidth 5.4 GHz from 12.6 to 18.0 GHz and minimum reflection loss of − 20.4 dB while La0.6FeO3−y/C which hit the minimum RL value − 25.0 dB at 14.8 GHz with the thickness of 3.75 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, Y.H. Du, G.B. Ji, Z.C.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 4, 1900163 (2019)

    Article  Google Scholar 

  2. G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interf. Sci. 536, 548–555 (2019)

    Article  Google Scholar 

  3. Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang, J. Li, L. Hu, Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017)

    Article  Google Scholar 

  4. A. Feng, G. Wu, C. Pan, Y. Wang, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    Article  Google Scholar 

  5. S.H. Liu, H.W. Yu, Q.Y. Zhang, F.S. Qin, X. Zhang, W.F. Xie, Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT: PSS electrode by enhancing carrier balance. J. Mater. Chem. C 7, 5426–5432 (2019)

    Article  Google Scholar 

  6. H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9, 1813–1822 (2016)

    Article  Google Scholar 

  7. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Excellent energy storage performance and thermal property of polymerbased composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019)

    Article  Google Scholar 

  8. Y. Wang, X. Gao, C. Lin, L. Shi, X. Li, G. Wu, Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloy. Compd. 785, 765–773 (2019)

    Article  Google Scholar 

  9. H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 167, 690–699 (2019)

    Article  Google Scholar 

  10. Y. Cheng, Y. Zhao, H.Q. Zhao, H.L. Lv, X.D. Qi, J.M. Cao, G.B. Ji, Y.W. Du, Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019)

    Article  Google Scholar 

  11. Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, H. Wu, Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A 118, 302–311 (2019)

    Article  Google Scholar 

  12. T. Hou, B. Wang, Z. Jia, H. Wu, D. Lan, Z. Huang, A. Feng, M. Ma, G. Wu, A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01537-0

    Google Scholar 

  13. K. Xu, J. Feng, Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 7, 45369–45376 (2017)

    Article  Google Scholar 

  14. S. Zhao, L. Wang, Y. Wang, X. Li, Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO. J. Phys. Chem. Solids 116, 43–49 (2018)

    Article  Google Scholar 

  15. Q. Rong, Y.M. Zhang, T.P. Lv, K.Y. Shen, B.Y. Zi, Z.Q. Zhu, J. Zhang, Q.J. Liu, Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures. Nanotechnology 29, 9 (2018)

    Article  Google Scholar 

  16. M. Mori, Y. Liu, T. Itoh, La0.6Sr0.4Co0.2Fe0.8O3-delta current collectors via Ag infiltration for microtubular solid oxide fuel cells with intermediate temperature operation. J. Electrochem. Soc. 156, B1182–B1187 (2009)

    Article  Google Scholar 

  17. H. Yan, Y. Fu, X. Wu, X. Xue, C. Li, L. Zhang, Core-shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage. Solid State Ion. 336, 95–101 (2019)

    Article  Google Scholar 

  18. M.L. Cai, N. Ishida, X. Li, X.D. Yang, T. Noda, Y.Z. Wu, F.X. Xie, H. Naito, D. Fujita, L.Y. Han, Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2, 296–306 (2018)

    Article  Google Scholar 

  19. X. Xue, H. Yan, Y. Fu, Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries. Solid State Ion. 335, 1–6 (2019)

    Article  Google Scholar 

  20. G. Xu, X. Wang, S. Gong, S. Wei, J. Liu, Y. Xu, Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 29, 355201 (2018)

    Article  Google Scholar 

  21. C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018)

    Article  Google Scholar 

  22. H.L. Lv, Y.H. Guo, G.L. Wu, G.B. Ji, Y. Zhao, Z.J.C. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces. 9, 5660–5668 (2017)

    Article  Google Scholar 

  23. Y.L. Zhu, W. Zhou, J. Yu, Y.B. Chen, M.L. Liu, Z.P. Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691–1697 (2016)

    Article  Google Scholar 

  24. M. Ma, Y. Yang, D. Liao, P. Lyu, J. Zhang, J. Liang, L. Zhang, Synthesis, characterization and catalytic performance of core-shell structure magnetic Fe3O4/P(GMA-EGDMA)-NH2/HPG-COOH-Pd catalyst. Appl. Organomet. Chem. 33, e4708 (2019)

    Article  Google Scholar 

  25. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  Google Scholar 

  26. H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018)

    Article  Google Scholar 

  27. H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019)

    Article  Google Scholar 

  28. X. Ren, H. Yang, S. Gen, J. Zhou, T. Yang, X. Zhang, Z. Cheng, S. Sun, Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale 8, 752–756 (2015)

    Article  Google Scholar 

  29. S. Zhao, Y. Wang, L. Wang, Y. Jin, Preparation, characterization and catalytic application of hierarchically porous LaFeO3 from a pomelo peel template. Inorg. Chem. Front. 4, 994–1002 (2017)

    Article  Google Scholar 

  30. S. Afzal, X. Quan, J. Zhang, High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B-Environ. 206, 692–703 (2017)

    Article  Google Scholar 

  31. H. Qi, J. Ye, N. Tao, M. Wen, Q. Chen, Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. J. Cryst. Growth 311, 394–398 (2009)

    Article  Google Scholar 

  32. G.S. Parkinson, Iron oxide surfaces. Surf. Sci. Rep. 71, 272–365 (2016)

    Article  Google Scholar 

  33. H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties 14 by controlled hydrolysis. J. Colloid Interface Sci. 314, 274–280 (2007)

    Article  Google Scholar 

  34. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interf. Sci. 533, 481–491 (2019)

    Article  Google Scholar 

  35. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  36. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  37. N. Wu, X. Liu, C. Zhao, C. Cui, A. Xia, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloy. Compd. 656, 628–634 (2016)

    Article  Google Scholar 

  38. H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces. 7, 9776–9783 (2015)

    Article  Google Scholar 

  39. B. Xu, X. Guan, L.Y. Zhang, X. Liu, Z. Jiao, X. Liu, X. Hu, G.X. Zhao, A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries. J. Mater. Chem. A 6, 4048–4054 (2018)

    Article  Google Scholar 

  40. J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. C 89, 25–32 (2018)

    Article  Google Scholar 

  41. C. Zhang, C. Wang, H. Huang, K. Zeng, Z. Wang, H. Jia, X. Li, Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnOx/HZSM-5 catalysts. Appl. Surf. Sci. 486, 108–120 (2019)

    Article  Google Scholar 

  42. X. Guo, Z. Chen, D. Cui, Y. Zhou, H. Huang, H. Zhang, F. Liu, K. Ibrahim, H. Qian, The colossal magnetoresistance (LaxSn1−x)(y)MnO3-delta films studied by X-ray photoemission spectroscopy. J. Cryst. Growth 219, 252–260 (2000)

    Article  Google Scholar 

  43. Y.H. Lee, J.M. Wu, Epitaxial growth of LaFeO3 thin films by RF magnetron sputtering. J. Cryst. Growth 263, 436–441 (2004)

    Article  Google Scholar 

  44. X. Dai, J. Cheng, Z. Li, M. Liu, Y. Ma, X. Zhang, Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming. Chem. Eng. Sci. 153, 236–245 (2016)

    Article  Google Scholar 

  45. L. Liu, L.M. Sun, J. Liu, X.L. Xiao, Z.B. Hu, X.Z. Cao, B.Y. Wang, X.F. Liu, Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. Int. J. Hydrog. Energy 39, 11258–11266 (2014)

    Article  Google Scholar 

  46. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 255, 8194 (2009)

    Article  Google Scholar 

  47. S. Ben Hammouda, F. Zhao, Z. Safaei, D.L. Ramasamy, B. Doshi, M. Sillanpaa, Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation. Appl. Catal. B-Environ. 233, 99–111 (2018)

    Article  Google Scholar 

  48. Y. Sun, J. Zhang, Y. Zong, X. Deng, H. Zhao, J. Feng, M. He, X. Li, Y. Peng, X. Zheng, Crystalline-amorphous permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl. Mater. Interfaces. 11, 6374–6383 (2019)

    Article  Google Scholar 

  49. J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B-Environ. 206, 300–307 (2017)

    Article  Google Scholar 

  50. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3, 647 (2011)

    Article  Google Scholar 

  51. Q.G. Chi, X.B. Wang, C.H. Zhang, Q.G. Chen, M.H. Chen, T.D. Zhang, L. Gao, Y. Zhang, Y. Cui, X. Wang, Q.Q. Lei, High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6, 8641–8649 (2018)

    Article  Google Scholar 

  52. Y. Cheng, J.M. Cao, Y. Li, Z.Y. Li, H.Q. Zhao, G.B. Ji, Y.W. Du, The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustain. Chem. Eng. 6, 1427–1435 (2018)

    Article  Google Scholar 

  53. M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11, 185 (2019)

    Article  Google Scholar 

  54. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)

    Article  Google Scholar 

  55. X. Qiao, H. Wu, Z. Zhou, Q. Tang, X. Pang, M. Zang, S. Zhou, Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: from sphere to vesicle. Ind. Crop. Prod. 135, 64–71 (2019)

    Article  Google Scholar 

  56. Z. Jia, B. Wang, A. Feng, J. Liu, C. Zhang, M. Zhang, G. Wu, Fabrication of NixCo3-xS4 hollow nanosphere as wideband electromagnetic absorber at thin matched thickness. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.05.089

    Google Scholar 

  57. J. Li, J. Ma, S. Chen, J. He, Y. Huang, Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocolloid. 82, 363–369 (2018)

    Article  Google Scholar 

  58. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  59. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 22, 18291–18299 (2012)

    Article  Google Scholar 

  60. Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    Article  Google Scholar 

  61. X. Chen, K. Zhong, T. Shi, X. Meng, G. Wu, Y. Lu, Urchin-like polyaniline/magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. Synth. Met. 248, 59–67 (2019)

    Article  Google Scholar 

  62. Z. Jia, Z. Gao, D. Lan, Y. Cheng, G. Wu, H. Wu, Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B 27, 117806 (2018)

    Article  Google Scholar 

  63. H.L. Lv, H.Q. Zhang, G.B. Ji, Z.C. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces. 7, 6529–6538 (2016)

    Article  Google Scholar 

  64. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  Google Scholar 

  65. J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Wang, G. Long, Y. Wang, X. Li, X. Zheng, Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018)

    Article  Google Scholar 

  66. Y. Wang, X. Gao, L. Zhang, X. Wu, Q. Wang, C. Luo, G. Wu, Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 480, 830–838 (2019)

    Article  Google Scholar 

  67. D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01201-7

    Google Scholar 

  68. Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji, H.Q. Zhao, J.M. Cao, Y.W. Du, Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018)

    Article  Google Scholar 

  69. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron. 29, 17122–17136 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51407134, 51801001), China Postdoctoral Science Foundation (Nos. 2016M590619, 2016M601878), Natural Science Foundation of Shandong Province (No. ZR2019YQ24), Qingdao Postdoctoral Application Research Project, Provincial Key Research and Development Program of Shaanxi (No. 2019GY-197), Key Project of Baoji University of Arts and Sciences (No. ZK2018051), Baoji Science and Technology Project (No. 16RKX1-29) and Baoji Engineering Technology Research Center for Ultrafast Optics and New Materials (No. 2015CXNL-1-3). The authors acknowledge the support from The Thousand Talents Plan, The World-Class University and Discipline, The Taishan Scholar’s Advantageous and Distinctive Discipline Program of Shandong Province and The World-Class Discipline Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaoqiang Zhang, Ailing Feng or Guanglei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhenguo Gao and Zirui Jia have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Jia, Z., Zhang, J. et al. Tunable microwave absorbing property of LaxFeO3/C by introducing A-site cation deficiency. J Mater Sci: Mater Electron 30, 13474–13487 (2019). https://doi.org/10.1007/s10854-019-01715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01715-0

Navigation