Skip to main content
Log in

Activation of persulfate ions by TiO2/carbon dots nanocomposite under visible light for photocatalytic degradations of organic contaminants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 17 May 2022

This article has been updated

Abstract

In this study, we synthesized TiO2/carbon dots (TiO2/C-Dots) powders and their photocatalytic performances were exceptionally improved under visible light in removals of different organic pollutants using persulfate anions. The characteristic of as-synthesized photocatalysts were studied by X-ray diffraction, high resolution transmission electron microscopy, scanning electron microscopy, energy dispersive analysis of X-rays, UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, Fourier transform-infrared, photoluminescence spectroscopy, and Brunauer–Emmett–Teller surface analysis. Among the synthesized samples, the TiO2/C-Dots (0.50 mL) nanocomposite had the greatest photoactivity. In addition, the removal rate constant of RhB by this photocatalyst in the existence of 1.48 mM persulfate ions was 439 × 10−4 min−1, which is almost 33.3, 3.35, 2.60, and 2.41-folds premier than those of the pure TiO2, persulfate, TiO2/persulfate, and TiO2/C-Dots (0.50 mL) samples, respectively. Reactive species scavenging experiments revealed that ·SO4 was generated following the addition of persulfate ions, whereas ·O2 and h+ were predominantly responsible for the degradation of pollutants. At last step, the band alignments were obtained by electrochemical studies and the mechanism for boosted photocatalytic ability in the presence of persulfate anions was suggested. The photocatalyst could be regenerated for five repeated use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. J.N. Armor, A history of industrial catalysis. Catal. Today 163, 3–9 (2011)

    Article  CAS  Google Scholar 

  2. M. Munoz, Z.M. De Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Appl. Catal. B 176, 249–265 (2015)

    Article  CAS  Google Scholar 

  3. M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, S.N. Zhang, S. Deng, Q.S. Li, K.Q. Zhang, Y.K. Lai, Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol. Rev. 5, 75–112 (2016)

    Article  CAS  Google Scholar 

  4. M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.-Q. Zhang, Y. Lai, Z. Lin, A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 42, 8418–8449 (2017)

    Article  CAS  Google Scholar 

  5. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7, 1569–1578 (2017)

    Article  CAS  Google Scholar 

  6. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices—a review. J. Environ. Manage. 92, 2304–2347 (2011)

    Article  CAS  Google Scholar 

  7. J.O. Tijani, O.O. Fatoba, L.F. Petrik, A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut. 224, 1770 (2013)

    Article  CAS  Google Scholar 

  8. K. Raj, U.R. Sardar, E. Bhargavi, I. Devi, B. Bhunia, O.N. Tiwari, Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohyd. Polym. 199, 353–364 (2018)

    Article  CAS  Google Scholar 

  9. M. Mousavi, A. Habibi-Yangjeh, S. Rahim Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron. 29, 1719–1747 (2018)

    Article  CAS  Google Scholar 

  10. M. Li, X. Tu, Y. Wang, Y. Su, J. Hu, B. Cai, J. Lu, Z. Yang, Y. Zhang, Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition. Nano-Micro Lett. 10, 45–56 (2018)

    Article  CAS  Google Scholar 

  11. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166, 603–643 (2015)

    Article  CAS  Google Scholar 

  12. S. Giannakis, S. Rtimi, C. Pulgarin, Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. Molecules 22, 1070 (2017)

    Article  CAS  Google Scholar 

  13. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation—a review. Chem. Eng. J. 338, 599–627 (2018)

    Article  CAS  Google Scholar 

  14. M. Sillanpää, M.C. Ncibi, A. Matilainen, Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review. J. Environ. Manage. 208, 56–76 (2018)

    Article  CAS  Google Scholar 

  15. N.H. Ince, Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason. Sonochem. 40, 97–103 (2018)

    Article  CAS  Google Scholar 

  16. M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)

    Article  CAS  Google Scholar 

  17. Y. Ma, X. Zhu, S. Xu, G. He, L. Yao, N. Hu, Y. Su, J. Feng, Y. Zhang, Z. Yang, Gold nanobipyramid@ cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Appl. Catal. B 234, 26–36 (2018)

    Article  CAS  Google Scholar 

  18. G. Matafonova, V. Batoev, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res. 132, 177–189 (2018)

    Article  CAS  Google Scholar 

  19. S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review. Chem. Eng. J. 330, 44–62 (2017)

    Article  CAS  Google Scholar 

  20. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem. Eng. J. 310, 41–62 (2017)

    Article  CAS  Google Scholar 

  21. G. Zhen, X. Lu, H. Kato, Y. Zhao, Y.-Y. Li, Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 69, 559–577 (2017)

    Article  CAS  Google Scholar 

  22. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 334, 1502–1517 (2017)

    Article  CAS  Google Scholar 

  23. R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D.D. Dionysiou, Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 19, 51–58 (2018)

    Article  Google Scholar 

  24. S. Mandal, T. Bera, G. Dubey, J. Saha, J.K. Laha, Uses of K2S2O8 in metal-catalyzed and metal-free oxidative transformations. ACS Catal. 8, 5085–5144 (2018)

    Article  CAS  Google Scholar 

  25. I.A. Ike, K. Linden, J.D. Orbell, M. Duke, Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 338, 651–669 (2018)

    Article  CAS  Google Scholar 

  26. B. Liu, M. Qiao, Y. Wang, L. Wang, Y. Gong, T. Guo, X. Zhao, Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation. Chemosphere 189, 115–122 (2017)

    Article  CAS  Google Scholar 

  27. R. Li, J. Kong, H. Liu, P. Chen, Y. Su, G. Liu, W. Lv, Removal of indomethacin using UV–vis/peroxydisulfate: kinetics, toxicity, and transformation pathways. Chem. Eng. J. 331, 809–817 (2018)

    Article  CAS  Google Scholar 

  28. S. Ghosh, A.P. Das, Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol. Environ. Chem. 97, 491–514 (2015)

    Article  CAS  Google Scholar 

  29. M. Sharon, F. Modi, M. Sharon, Titania based nanocomposites as a photocatalyst: a review. AIMS Mater. Sci. 3, 1236–1254 (2016)

    Article  CAS  Google Scholar 

  30. C.S. Uyguner-Demirel, N.C. Birben, M. Bekbolet, Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review. Catal. Today 284, 202–214 (2017)

    Article  CAS  Google Scholar 

  31. X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B 202, 620–641 (2017)

    Article  CAS  Google Scholar 

  32. N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram. Int. 43, 14552–14571 (2017)

    Article  CAS  Google Scholar 

  33. Z. Shayegan, C.-S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem. Eng. J. 334, 2408–2439 (2017)

    Article  CAS  Google Scholar 

  34. M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11, 86–102 (2018)

    Article  CAS  Google Scholar 

  35. K.K. Gangu, S. Maddila, S.B. Jonnalagadda, A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Sci. Total Environ. 646, 1398–1412 (2018)

    Article  CAS  Google Scholar 

  36. C. Zhang, Y. Li, D. Shuai, Y. Shen, D. Wang, Progress and challenges in photocatalytic disinfection of waterborne viruses: a review to fill current knowledge gaps. Chem. Eng. J. 355, 399–415 (2018)

    Article  CAS  Google Scholar 

  37. A. Mishra, A. Mehta, S. Basu, Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: a review. J. Environ. Chem. Eng. 6, 6088–6107 (2018)

    Article  CAS  Google Scholar 

  38. N. Zhang, Y. Zhang, Y.-J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)

    Article  CAS  Google Scholar 

  39. Z. Zhu, H. Cai, D.-W. Sun, Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Technol. 75, 23–35 (2018)

    Article  CAS  Google Scholar 

  40. H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci. Mater. Electron. 28, 3796–3805 (2017)

    Article  CAS  Google Scholar 

  41. X. Zou, Y. Dong, X. Zhang, Y. Cui, Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 366, 173–180 (2016)

    Article  CAS  Google Scholar 

  42. Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, P. Zhang, J. Zou, Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation. Appl. Surf. Sci. 436, 319–326 (2018)

    Article  CAS  Google Scholar 

  43. J.C.-T. Lin, K. Sopajaree, T. Jitjanesuwan, M.-C. Lu, Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep. Purif. Technol. 191, 233–243 (2018)

    Article  CAS  Google Scholar 

  44. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 7, 24754–24763 (2017)

    Article  CAS  Google Scholar 

  45. S. Yaparatne, C.P. Tripp, A. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts. J. Hazard. Mater. 346, 208–217 (2018)

    Article  CAS  Google Scholar 

  46. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange. J. Mater. Sci. Mater. Electron. 28, 18307–18321 (2017)

    Article  CAS  Google Scholar 

  47. J. Qiu, Y. Feng, X. Zhang, X. Zhang, M. Jia, J. Yao, Facile stir-dried preparation of gC3N4/TiO2 homogeneous composites with enhanced photocatalytic activity. RSC Adv. 7, 10668–10674 (2017)

    Article  CAS  Google Scholar 

  48. S.-R. Dalia, M.G.M. Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J. Environ. Chem. Eng. 6, 1601–1612 (2018)

    Article  CAS  Google Scholar 

  49. Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang, Y. Su, F. Gao, H. Wei, L. Zhang, Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5, 247–259 (2013)

    Article  Google Scholar 

  50. Y. Ma, X. Li, Z. Yang, S. Xu, W. Zhang, Y. Su, N. Hu, W. Lu, J. Feng, Y. Zhang, Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 32, 9418–9427 (2016)

    Article  CAS  Google Scholar 

  51. C. Wang, K. Yang, X. Wei, S. Ding, F. Tian, F. Li, One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance. Ceram. Int. 44, 22481–22488 (2018)

    Article  CAS  Google Scholar 

  52. L. Xu, X. Bai, L. Guo, S. Yang, P. Jin, L. Yang, Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2−x nanocomposite for the efficient photoreduction of Cr(VI) under visible light. Chem. Eng. J. 357, 473–486 (2019)

    Article  CAS  Google Scholar 

  53. Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, S. Tan, Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light. J. Alloy. Compd. 777, 234–243 (2019)

    Article  CAS  Google Scholar 

  54. H. Yu, H. Zhang, H. Huang, Y. Liu, H. Li, H. Ming, Z. Kang, ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 36, 1031–1035 (2012)

    Article  CAS  Google Scholar 

  55. A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández, M.J. Ruedas-Rama, A. Megia-Fernández et al., Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49, 1103–1105 (2013)

    Article  CAS  Google Scholar 

  56. W. Wei, Y. Ni, Z. Xu, One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application. J. Alloy. Compd. 622, 303–308 (2015)

    Article  CAS  Google Scholar 

  57. N.C.T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B 193, 67–74 (2016)

    Article  CAS  Google Scholar 

  58. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Decoration of carbon dots and AgCl over g-C3N4 nanosheets: novel photocatalysts with substantially improved activity under visible light. Sep. Purif. Technol. 199, 64–77 (2018)

    Article  CAS  Google Scholar 

  59. J. Zhou, J. Chen, J. Zheng, B. Yan, Y. Zhou, B. Hou, B. Chen, Role of carbon quantum dots in titania (TiO2) based photoelectrodes: upconversion or others? J. Colloid Interface Sci. 529, 396–403 (2018)

    Article  CAS  Google Scholar 

  60. J. Wang, M. Gao, G. Wei Ho, Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. J. Mater. Chem. A 16, 5703–5709 (2014)

    Article  CAS  Google Scholar 

  61. B. Zhang, H. Maimaiti, D.-D. Zhang, B. Xu, M. Wei, Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor. J. Photochem. Photobiol. A 345, 54–62 (2017)

    Article  CAS  Google Scholar 

  62. P. Chen, F. Wang, Z.-F. Chen, Q. Zhang, Y. Su, L. Shen, K. Yao, Y. Liub, Z. Caic, W. Lva, G. Liua, Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species. Appl. Catal. B 204, 250–259 (2017)

    Article  CAS  Google Scholar 

  63. A. Kulkarni, C. Han, D. Bhatkhande, D.-D. Dionysiou, Photocatalytic degradation of maleic anhydride using visible light-activated NF-codoped TiO2. Sep. Purif. Technol. 156, 1011–1018 (2015)

    Article  CAS  Google Scholar 

  64. L.-W. Matzek, K.-E. Carter, Activated persulfate for organic chemical degradation: a review. Chemosphere 151, 178–188 (2016)

    Article  CAS  Google Scholar 

  65. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light. J. Photochem. Photobiol. A 367, 94–104 (2018)

    Article  CAS  Google Scholar 

  66. S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 51, 12215–12218 (2012)

    Article  CAS  Google Scholar 

  67. M. Shekofteh-Gohari, A. Habibi-Yangjeh, Facile preparation of Fe3O4@AgBr–ZnO nanocomposites as novel magnetically separable visible-light-driven photocatalysts. Ceram. Int. 41, 1467–1476 (2015)

    Article  CAS  Google Scholar 

  68. Q. Que, Y. Xing, Z. He, Y. Yang, X. Yin, W. Que, Bi2O3/carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Mater. Lett. 209, 220–223 (2017)

    Article  CAS  Google Scholar 

  69. S. Feizpoor, A. Habibi-Yangjeh, Integration of Ag2WO4 and AgBr with TiO2 to fabricate ternary nanocomposites: novel plasmonic photocatalysts with remarkable activity under visible light. Mater. Res. Bull. 99, 93–102 (2018)

    Article  CAS  Google Scholar 

  70. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata, Graphitic carbon nitride nanosheets anchored with BiOBr and carbon dots: exceptional visible-light-driven photocatalytic performances for oxidation and reduction reactions. J. Colloid Interface Sci. 530, 642–657 (2018)

    Article  CAS  Google Scholar 

  71. L. Zhu, D. Huang, J. Ma, D. Wu, M. Yang, S. Komarneni, Fabrication of AgBr/Ag2CrO4 composites for enhanced visible-light photocatalytic activity. Ceram. Int. 41, 12509–12513 (2015)

    Article  CAS  Google Scholar 

  72. S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic visible-light-driven photocatalysts with substantially enhanced activity through pn heterojunction. J. Colloid Interface Sci. 524, 325–336 (2018)

    Article  CAS  Google Scholar 

  73. D. Yan, Y. Liu, C.-Y. Liu, Z.-Y. Zhang, S.-D. Nie, Multi-component in situ and in-step formation of visible-light response C-Dots composite TiO2 mesocrystals. RSC Adv. 6, 14306–14313 (2016)

    Article  CAS  Google Scholar 

  74. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)

    Article  CAS  Google Scholar 

  75. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: boosting visible-light-driven photocatalytic activity. J. Taiwan Inst. Chem. Eng. 87, 98–111 (2018)

    Article  CAS  Google Scholar 

  76. X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4, 5572–5575 (2012)

    Article  CAS  Google Scholar 

  77. S. Mingye, S. Qu, W. Ji, P. Jing, D. Li, L. Qin, J. Cao, H. Zhang, J. Zhao, D. Shen, Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region. Phys. Chem. Chem. Phys. 17, 7966–7971 (2015)

    Article  CAS  Google Scholar 

  78. Y. Liu, H. Guo, Y. Zhang, X. Cheng, P. Zhou, G. Zhang, J. Wang, P. Tang, T. Ke, W. Li, Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Sep. Purif. Technol. 192, 88–98 (2018)

    Article  CAS  Google Scholar 

  79. J. Yan, X. Han, J. Qian, J. Liu, X. Dong, F. Xi, Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance. J. Mater. Sci. 52, 13091–13102 (2017)

    Article  CAS  Google Scholar 

  80. B. Ye, X. Han, M. Yan, H. Zhang, F. Xi, X. Dong, J. Liu, Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. J. Colloid Interface Sci. 507, 209–216 (2017)

    Article  CAS  Google Scholar 

  81. L. Zhang, Y. Gao, X. Ding, Z. Yu, L. Sun, High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation. Chemsuschem 7, 2801–2804 (2014)

    Article  CAS  Google Scholar 

  82. A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002)

    Article  CAS  Google Scholar 

  83. Z. Zhang, S. Lin, W. Cui, X. Li, H. Li, Enhanced photocatalytic activity of Ag/CQDs/Bi2O2CO3 composite photocatalyst under full-spectrum light. Mater. Lett. 234, 264–268 (2019)

    Article  CAS  Google Scholar 

  84. Y. Zhang, L. Wang, M. Yang, J. Wang, J. Shi, Carbon quantum dots sensitized ZnSn (OH)6 for visible light-driven photocatalytic water purification. Appl. Surf. Sci. 466, 515–524 (2019)

    Article  CAS  Google Scholar 

  85. H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 5, 3289–3297 (2013)

    Article  CAS  Google Scholar 

  86. X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu, Z. Kang, Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B 206, 501–509 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from University of Mohaghegh Ardabili-Iran is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Habibi-Yangjeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabri, M., Habibi-Yangjeh, A. & Vadivel, S. Activation of persulfate ions by TiO2/carbon dots nanocomposite under visible light for photocatalytic degradations of organic contaminants. J Mater Sci: Mater Electron 30, 12510–12522 (2019). https://doi.org/10.1007/s10854-019-01611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01611-7

Navigation