Skip to main content

Advertisement

Log in

Third order nonlinear optical properties of β enhanced PVDF based nanocomposite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PVDF based nanocomposite thin films have received great interest in energy harvesting, ferroelectric, pyroelectric and dielectric applications. In this novel study, we have exploited the electroactive β-phase (polar) formation in polyvinylidine fluoride–halloysite nanotube (PVDF–HNT) nanocomposite thin films fabricated by the spin coating technique for nonlinear optical applications. It was demonstrated that HNTs of different volume percentage loadings in the PVDF matrix were able to effectively nucleate PVDF in β (TTTT-all trans) conformation using X-ray diffraction and Infrared spectroscopy techniques. Closed aperture Z-scan measurements were performed for all the thin film samples with a CW laser as an excitation source at a wavelength of 632.8 nm. We observed a sign change in the nonlinear refractive index for PVDF. Nonlinear refractive index has a negative sign for pristine PVDF and a positive sign for HNT incorporated PVDF thin films. This anomalous behavior of change in the nonlinear refraction of PVDF is explained in our present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Suganthi et al., Tunable physicochemical and bactericidal activity of multicarboxylic-acids-crosslinked polyvinyl alcohol membrane for food packaging applications. ChemistrySelect 3, 11167–11176 (2018)

    Article  CAS  Google Scholar 

  2. J. Cai et al., Doping and band gap control at poly(vinylidene fluoride)/graphene interface. J. Phys. D 51, 195303 (2018)

    Article  Google Scholar 

  3. H. Li et al., Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos. Sci. Technol. 121, 49–55 (2015)

    Article  CAS  Google Scholar 

  4. S. Pavan et al., Enhanced dielectric properties and energy storage density of interface controlled ferroelectric BCZT-epoxy nanocomposites. Compos. Interfaces (2017). https://doi.org/10.1080/09276440.2017.1262665

    Article  Google Scholar 

  5. M.G. Broadhurst, G.T. Davis, J.E. Mckinney, R.E. Collins, Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J. Appl. Phys. 49, 4992–4997 (2008)

    Article  Google Scholar 

  6. H.M. Shanshool, M. Yahaya, W. Mahmood, M. Yunus, I.Y. Abdullah, Influence of CuO nanoparticles on third order nonlinearity and optical limiting threshold of polymer. Opt. Quantum Electron. 49, 18 (2017)

    Article  Google Scholar 

  7. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  8. V. Ranjan, M.B. Nardelli, J. Bernholc, Electric field induced phase transitions in polymers: a novel mechanism for high speed energy storage. Phys. Rev. Lett. 108, 1–5 (2012)

    Article  Google Scholar 

  9. S.J. Kang et al., Spin cast ferroelectric beta poly (vinylidene fluoride) thin films via rapid thermal annealing. Appl. Phys. Lett. 92, 012921 (2014)

    Article  Google Scholar 

  10. I.Y. Abdullah, M. Yahaya, Influence of the spinning rate on the β-phase formation in poly (vinylidene fluoride) (PVDF) films. In: AIP conference proceddings (2017), p. 020016

  11. S. Bodkhe, P.S.M. Rajesh, S. Kamle, Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J. Polym. Res. 21(5), 43 (2014)

    Article  Google Scholar 

  12. T.U. Patro, M.V. Mhalgi, D.V. Khakhar, A. Misra, Studies on poly(vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer (Guildf) 49, 3486–3499 (2008)

    Article  CAS  Google Scholar 

  13. D. Shah et al., Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16, 1173–1177 (2004)

    Article  CAS  Google Scholar 

  14. W. Liang et al., Halloysite clay nanotubes based phase change stability for energy saving and storage. RSC Adv. 6, 19669–19675 (2016)

    Article  CAS  Google Scholar 

  15. P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly (vinylidene fluoride) thin films. Appl. Clay Sci. 99, 149–159 (2014)

    Article  CAS  Google Scholar 

  16. B. Wang, H. Huang, Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Composites A 66, 16–24 (2014)

    Article  CAS  Google Scholar 

  17. S. Pavan, P. Sadhu, S. Siddabattuni, S. Muthukumar, Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. J. Mater. Sci. Mater. Electron. 29, 6174–6182 (2018)

    Article  Google Scholar 

  18. S.P.P. Sadhu et al., Large nonlinear refraction in pulsed laser deposited BCZT thin films on quartz substrates. J. Opt. Soc. Am. B 35, 2625–2632 (2018)

    Article  CAS  Google Scholar 

  19. V. Shanmugam, A.L. Muppudathi, S. Jayavel, K.S. Jeyaperumal, Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation of bacterias. Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.05.009

    Article  Google Scholar 

  20. S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron. 29, 10784–10801 (2018)

    CAS  Google Scholar 

  21. R. Gregorio, Determination of the of the α, β and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 12–14 (2005)

    Google Scholar 

  22. M. Khalifa, S. Janakiraman, S. Ghosh, A. Venimadhav, S. Anandhan, PVDF/halloysite nanocomposite-based non-wovens as gel polymer electrolyte for high safety lithium ion battery. Polym. Compos. (2018). https://doi.org/10.1002/pc.25043

    Article  Google Scholar 

  23. A. Salimi, A.A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci. B 42, 3487–3495 (2004)

    Article  CAS  Google Scholar 

  24. K. Asai, M. Okamoto, K. Tashiro, Crystallization behavior of nano-composite based on poly(vinylidene fluoride) and organically modified layered titanate. Polymer (Guildf) 49, 4298–4306 (2008)

    Article  CAS  Google Scholar 

  25. P. Nallasamy, S. Mohan, Vibrational spectroscopic characterization of form II poly(vinylidene fluoride). Indian J. Pure Appl. Phys. 43, 821–827 (2005)

    CAS  Google Scholar 

  26. Y. Zhang, A. Tang, H. Yang, J. Ouyang, Applied clay science applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 119, 8–17 (2015)

    Article  Google Scholar 

  27. A. Salimi, A.A. Yousefi, FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699–704 (2003)

    Article  CAS  Google Scholar 

  28. Y. Zhang, J. Ouyang, H. Yang, Applied clay science metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl. Clay Sci. 95, 252–259 (2014)

    Article  CAS  Google Scholar 

  29. A.M. Ismail, M.I. Mohammed, S.S. Fouad, Optical and structural properties of polyvinylidene fluoride (PVDF)/reduced graphene oxide (RGO) nanocomposites. J. Mol. Struct. 1170, 51–59 (2018)

    Article  CAS  Google Scholar 

  30. M. Sheik-Bahae, A.A. Said, T. Wei, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  CAS  Google Scholar 

  31. H.M. Shanshool, M. Yahaya, Influence of polymer matrix on nonlinear optical properties and optical limiting threshold of polymer-ZnO nanocomposites. J. Mater. Sci.: Mater. Electron. 27(9), 9503–9513 (2016)

    CAS  Google Scholar 

  32. L. Guimarães, A.N. Enyashin, G. Seifert, H.A. Duarte, Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J. Phys. Chem. C 114, 11358–11363 (2010)

    Article  Google Scholar 

  33. F.M. Sheffield, Optical Properties of Solids (Clarendon Press, Oxford, 2010)

    Google Scholar 

  34. K. Matsushige, N. Kato, T. Horiuchi, Anomalous photovoltaic effect in ferroelectric polymers, in [Proceedings] 1990 IEEE 7th International Symposium on Applications of Ferroelectrics (1990), pp. 647–649

  35. A.V. Bune, V.M. Gridkin, K.A. Verkhovskaya, G. Taylor, Photoelectric properties of the ferroelectric poymer poly(vinylidene fluoride). Polym. J. 22, 7–14 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from DST-FIST (Sanction No. SR/FST/PSI-172/2012). The authors also acknowledge the Department of Biosciences- SSSIHL for proving the FTIR characterization. We thank Prof. K. B. R. Varma and Dr. K. Vijay Sai for constantly guiding us. The authors offer their humble gratitude to the founder Chancellor of SSSIHL, Bhagawan Sri Sathya Sai Baba for providing excellent research facilities at Central Research Instruments Facility (CRIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamarti Viswanath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanath, P., Rambhatla, P.V., Sai Kiran, P. et al. Third order nonlinear optical properties of β enhanced PVDF based nanocomposite thin films. J Mater Sci: Mater Electron 30, 12447–12455 (2019). https://doi.org/10.1007/s10854-019-01604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01604-6

Navigation