Skip to main content

Advertisement

Log in

The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

1.0 at% Ag-containing hydroxyapatites (HAps) doped with the different amounts of Gd (e.g., 0, 0.8, 1.6 and 2.4 at%) were synthesized by a wet chemical method and their dielectric properties were investigated before and after gamma irradiation. The changes in the relative permittivity and alternating current (AC) conductivity values of the as-synthesized samples before and after irradiation were investigated using dielectric measurements. It was found that both Gd content and gamma irradiation dose significantly affect the dielectric properties and AC conductivity. It was concluded that especially due to the thermal stabilities and suitable dielectric properties, the as-synthesized Gd-doped Ag containing HAps could be used for bone healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Supova, Ceram Int. (2015). https://doi.org/10.1016/j.ceramint.2015.03.316

    Google Scholar 

  2. I.S. Yahia, M. Shkir, S. Al Faify, V. Ganesh, H.Y. Zahran, M. Kilany, Mater. Sci. Eng. C. (2017). https://doi.org/10.1016/j.msec.2016.11.074

    Google Scholar 

  3. I. Cacciotti, Cationic and anionic substitutions in hydroxyapatite, in Handbook of Bioceramics and Biocomposites, ed. by I.V. Antoniac (Springer International Publishing, Switzerland, Basel, 2016), pp. 145–211

    Chapter  Google Scholar 

  4. X. Zhang, W. Zhang, Z. Yang, Z. Zhang, Front. Sci. Eng. Chem. (2012). https://doi.org/10.1007/s11705-012-1299-9

    Google Scholar 

  5. A. Bral, M.Y. Mommaerts, J. Cranio Maxill. Surg. (2016). https://doi.org/10.1016/j.jcms.2015.12.004

    Google Scholar 

  6. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, J. Funct. Biomater. (2015). https://doi.org/10.3390/jfb6041099

    Google Scholar 

  7. O. Kaygili, S.V. Dorozhkin, S. Keser, Mater. Sci. Eng. C. (2014). https://doi.org/10.1016/j.msec.2014.05.024

    Google Scholar 

  8. A.C. Ferro, M. Guedes, Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2018.11.083

    Google Scholar 

  9. J. Latocha, M. Wojasinski, K. Jurczak, S. Gierlotka, P. Sobieszuk, T. Ciach, Chem. Eng. Process. (2018). https://doi.org/10.1016/j.cep.2018.10.001

    Google Scholar 

  10. Y. Bai, B.X. Chi, W. Ma, C.W. Liu, Surf. Coat Technol. (2019). https://doi.org/10.1016/j.surfcoat.2019.01.051

    Google Scholar 

  11. H. Güler, G. Gündoğmaz, F. Kurtuluş, G. Çelik, Ş.S. Gacanoğlu, Solid State Sci. (2011). https://doi.org/10.1016/j.solidstatesciences.2011.08.016

    Google Scholar 

  12. M. Canillas, R. Rivero, R. García-Carrodeguas, F. Barba, M.A. Rodríguez, Bol. Soc. Esp Ceram V. (2017). https://doi.org/10.1016/j.bsecv.2017.05.002

    Google Scholar 

  13. J. Wolff, D. Hofmann, W. Amelung, H. Lewandowski, K. Kaiser, R. Bol, Appl Geochem. (2018). https://doi.org/10.1016/j.apgeochem.2018.08.010

    Google Scholar 

  14. D. Núñez, E. Elgueta, K. Varaprasad, P. Oyarzún, Mater Lett. (2018). https://doi.org/10.1016/j.matlet.2018.07.077

    Google Scholar 

  15. D.M. Vranceanu, A.C. Parau, C.M. Cotrut, A.E. Kiss, L.R. Constantin, V. Braic, A. Vladescu, Ceram Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.191

    Google Scholar 

  16. K. Ravindranadh, B. Babu, M.C. Rao, J. Shim, Ch. Venkata Reddy, R.V.S.S.N. Ravikumar, J. Mater. Sci. (2015). https://doi.org/10.1007/s10854-015-3268-9

    Google Scholar 

  17. R.T. Candidato Jr., R. Sergi, J. Jouin, O. Noguera, L. Pawlowski, J. Eur. Ceram Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.037

    Google Scholar 

  18. M. Othmani, H. Bachoua, Y. Ghandour, A. Aissa, M. Debbabi, Mater. Res. Bull. (2018). https://doi.org/10.1016/j.materresbull.2017.09.056

    Google Scholar 

  19. M. Nouri-Felekori, M. Khakbiz, N. Nezafati, Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.01.147

    Google Scholar 

  20. D. Mendoza-Anaya, E. Flores-Díaz, G. Mondragón-Galicia, M.E. Fernández-García, E. Salinas-Rodríguez, T.V.K. Karthik, V. Rodríguez-Lugo, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9147-4

    Google Scholar 

  21. X. Wang, S. Ihara, X. Li, A. Ito, Y. Sogo, Y. Watanabe, N.M. Tsuji, A. Yamazaki, Colloids Surf B Biointerfaces (2019). https://doi.org/10.1016/j.colsurfb.2018.11.026

    Google Scholar 

  22. A. Fahami, G.W. Beall, T. Betancourt, Mater. Sci. Eng. C. (2016). https://doi.org/10.1016/j.msec.2015.10.002

    Google Scholar 

  23. Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, L. Ma, Z. Cui, S. Zhu, Y. Liang, Y. Liu, H. Bao, X. Li, Q. Huo, Z. Liu, X. Yang, Mater Sci Eng C (2017). https://doi.org/10.1016/j.msec.2016.10.079

    Google Scholar 

  24. S. Sathishkumar, K. Louis, E. Shinyjoy, D. Gopi, Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.5b04329

    Google Scholar 

  25. J.F. Cawthray, A.L. Creagh, C.A. Haynes, C. Orvig, Inorg Chem. (2015). https://doi.org/10.1021/ic502425e

    Google Scholar 

  26. S.P. Bowen, J.D. Mancini, V. Fessatidis, M. Grabiner, Ann. Biomed. Eng. (2008). https://doi.org/10.1007/s10439-007-9408-5

    Google Scholar 

  27. S.A.W. Pickering, B.E. Scammell, Int. J. Low Extrem. Wounds. (2002). https://doi.org/10.1177/153473460200100302

    Google Scholar 

  28. H. Badran, I.S. Yahia, M.S. Hamdy, N.S. Awwad, Radiat. Phys. Chem. (2017). https://doi.org/10.1016/j.radphyschem.2016.08.001

    Google Scholar 

  29. B.D. Cullity, Elements of X–Ray Diffraction (Addison–Wesley Publishing Company, Boston, 1978)

    Google Scholar 

  30. G. Cheng, Y. Zhang, H. Yin, Y. Ruan, Y.Sun, K. Lin, Ceram Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.194

    Google Scholar 

  31. M. Mothibas, C. Manoharan, S. Dhanapandian, S.J. Jeyakumar, Asian J. Chem. 25, S59 (2013)

    Article  Google Scholar 

  32. G.K. Williamson, R.E. Smallman, Philos. Mag. (1956). https://doi.org/10.1080/14786435608238074

    Google Scholar 

  33. E. Landi, A. Tampieri, G. Celotti, S. Sprio, J. Eur. Ceram Soc. (2000). https://doi.org/10.1016/S0955-2219(00)00154-0

    Google Scholar 

  34. T.S. Sampath Kumar, K. Madhumathi, Y. Rubaiya, M. Doble, Front. Bioeng. Biotechnol. (2015). https://doi.org/10.3389/fbioe.2015.00059

    Google Scholar 

  35. O. Kaygili, S. Keser, Mater Lett. (2015). https://doi.org/10.1016/j.matlet.2014.11.078

    Google Scholar 

  36. K. Madhumathi, T.S. Sampath Kumar, T.M. Sanjeed, A. Sabik Muhammed, N. Sahal, D. Sharanya, Bioceram. Dev. Appl. (2014). https://doi.org/10.4172/2090-5025.1000079

    Google Scholar 

  37. E.I. Getman, S.N. Loboda, T.V. Tkachenko, N.V. Yablochkova, K.A. Chebyshev, Russ. J. Inorg. Chem. (2010). https://doi.org/10.1134/S0036023610030058

    Google Scholar 

  38. A.S.F. Alqap, I. Sopyan, Indian J. Chem. 48A, 1492 (2009)

    Google Scholar 

  39. J. Reyes-Gasga, E.L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G.E. Tiznado-Orozco, R. García-García, E.F. Brès, Mater. Sci. Eng. C. (2013). https://doi.org/10.1016/j.msec.2013.07.014

    Google Scholar 

  40. Z.Z. Zyman, M.V. Tkachenko, Process Appl Ceram. (2013). https://doi.org/10.2298/PAC1304153Z

    Google Scholar 

  41. A. Stoch, W. Jastrzebski, A. Brozek, B. Trybalska, M. Cichocińska, E. Szarawara, J. Mol. Struct. (1999). https://doi.org/10.1016/S0022-2860(99)00170-2

    Google Scholar 

  42. C.V.M. Rodrigues, P. Serricella, A.B.R. Linhares, R.M. Guerdes, R. Borojevic, M.A. Rossi, M.E.L. Duarte, M. Farina, Biomaterials (2003). https://doi.org/10.1016/S0142-9612(03)00410-1

    Google Scholar 

  43. S.E.P. Dowker, J.C. Elliott, J. Solid State Chem. (1983). https://doi.org/10.1016/0022-4596(83)90005-1

    Google Scholar 

  44. J. Wang, L.L. Shaw, Biomaterials (2009). https://doi.org/10.1016/j.biomaterials.2009.08.048

    Google Scholar 

  45. A.J. Nathanael, S.I. Hong, D. Mangalaraj, P.C. Chen, Chem. Eng. J. (2011). https://doi.org/10.1016/j.cej.2011.07.053

    Google Scholar 

  46. A. Rapacz-Kmita, C. Paluszkiewicz, A. Ślósarczyk, Z. Paszkiewicz, J Mol. Struct. (2005). https://doi.org/10.1016/j.molstruc.2004.11.070

    Google Scholar 

  47. D. Choi, P.N. Kumta, J. Am. Ceram. Soc. (2006). https://doi.org/10.1111/j.1551-2916.2005.00738.x

    Google Scholar 

  48. S. Prakash Parthiban, K. Elayaraja, E.K. Girija, Y. Yokogawa, R. Kesavamoorthy, M. Palanichamy, K. Asokan, S. Narayana Kalkura, J. Mater. Sci. (2009). https://doi.org/10.1007/s10856-008-3484-4

    Google Scholar 

  49. S. Kannan, J.F. Ferreira, Chem. Mater. (2006). https://doi.org/10.1021/cm051966i

    Google Scholar 

  50. P.N. Chavan, M.M. Bahir, R.U. Mene, M.P. Mahabole, R.S. Khairnar, Mater. Sci. Eng. B. (2010). https://doi.org/10.1016/j.mseb.2009.11.012

    Google Scholar 

  51. A.G. Shaik, M.A.A. Siddiqui, Int. J. Sci. Environ. Tech. 2, 1412 (2013)

    Google Scholar 

  52. O. Kaygili, S. Keser, T. Ates, F. Yakuphanoglu, Ceram Int. (2013). https://doi.org/10.1016/j.ceramint.2013.03.037

    Google Scholar 

  53. M.D. Shah, B. Want, Bull. Mater. Sci. 38, 73 (2015)

    Article  Google Scholar 

  54. C.C. Silva, M.A. Valente, M.P.F. Graça, A.S.B. Sombra, J. Non-Cryst. Solids (2005). https://doi.org/10.1016/j.jnoncrysol.2005.04.082

    Google Scholar 

  55. K.P. Tank, B.V. Jogiya, D.K. Kanchan, M.J. Joshi, Sol. St Phen. (2014). https://doi.org/10.4028/www.scientific.net/SSP.209.151

    Google Scholar 

  56. B.V. Jogiya, H.O. Jethava, K.P. Tank, V.R. Raviya, M.J. Joshi, Impedance and modulus spectroscopic study of nano hydroxyapatite, In International Conference on Condensed Matter and Applied Physics (ICC 2015), AIP Publishing, Govt. Engineering College Bikaner, Rajasthan, India, 2015, 020227 1–4

  57. M.J. Uddin, T.R. Middya, B.K. Chaudhuri, Preparation of silver-hydroxyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications, In International Conference on Materials Science and Technology (ICMST 2012), IOP Conf. Series: Materials Science and Engineering 73, Kerala, India, 2015, 012070 1–5

  58. A.A. Hendi, J. Alloy Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.021

    Google Scholar 

  59. A.K. Jonscher, Nature (1977). https://doi.org/10.1038/267673a0

    Google Scholar 

  60. T.T. Davis, S. Tadlock, J. Bernbeck, D.A. Fung, D.M. Molinares, J. Clin. Neurophysiol. (2014). https://doi.org/10.1097/WNP.0000000000000040

    Google Scholar 

  61. K. Funke, Prog. Solid State Chem. (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Google Scholar 

  62. A.N. Papathanassiou, J. Non-Cryst. Solids (2006). https://doi.org/10.1016/j.jnoncrysol.2006.08.019

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Management Unit of Scientific Research projects of Firat University (FÜBAP) (Project Number: FF.18.16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Kaygili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaygili, O., Keser, S., Selçuk, A.B. et al. The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. J Mater Sci: Mater Electron 30, 10443–10453 (2019). https://doi.org/10.1007/s10854-019-01387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01387-w

Navigation