Skip to main content
Log in

Pressureless sintering multi-scale Ag paste by a commercial vacuum reflowing furnace for massive production of power modules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Air is critical to Ag sintering. The Cu surface of the non-metallized direct-bonding-copper (DBC) substrate can be oxidized seriously for bonding power devices using Ag paste in air. In this paper, we presented a pressureless sintering approach for a multi-scale Ag paste in the formic acid vapor by a commercial vacuum reflowing furnace. The study found that the activation temperature of the formic acid vapor had an obvious effect on the sintering behavior of the multi-scale Ag paste. The multi-scale Ag paste could obtain much denser sintered Ag when the formic acid vapor was rapidly injected at 180 °C by the vacuum reflowing furnace. The sintered Ag necks larger than 0.4 μm and the porosity lower than 11.3% were achieved in formic acid vapor, which had better sintering behavior than Ag nanoparticles (NPs) paste. The thermal resistance of 1200 V/50 A half-bridge IGBT modules by sintering the multi-scale Ag paste in formic acid vapor was 0.41 °C/W, which was ~ 12% lower than those of the commercial IGBT modules using Pb92.5Sn5Ag2.5. This work could overcome the contradiction between the Ag sintering and the Cu oxidation of the non-metallized DBC substrate by the formic acid vapor in a commercial vacuum reflowing furnace. The method is extremely useful for the traditional manufacturer, who do not have to invest any new facilities for the sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci. 29(3), 1785–1797 (2018). https://doi.org/10.1007/s10854-017-8087-8

    Google Scholar 

  2. F. Yu, J. Cui, Z. Zhou, K. Fang, W. Johnson, M.C. Hamilton, Reliability of Ag sintering for power semiconductor die attach in high temperature applications. IEEE Trans. Power Electron. 32, 7083–7095 (2017). https://doi.org/10.1109/TPEL.2016.2631128

    Article  Google Scholar 

  3. S. Noh, C. Choe, C. Chen, H. Zhang, K. Suganuma, Printed wire interconnection using Ag sinter paste for wide band gap power semiconductors. J. Electron. Mater. 29(17), 15223–15232 (2018). https://doi.org/10.1007/s10854-018-9664-1

    Article  Google Scholar 

  4. S. Wang, H. Ji, M. Li, C. Wang, Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles. Mater. Lett. 85, 61–63 (2012). https://doi.org/10.1016/j.matlet.2012.06.089

    Article  Google Scholar 

  5. S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 55(12), 2524–2531 (2015). https://doi.org/10.1016/j.microrel.2015.10.017

    Article  Google Scholar 

  6. M.S. Kim, H. Nishikawa, Influence of ENIG defects on shear strength of pressureless Ag nanoparticle sintered joint under isothermal aging. Microelectron. Reliab. 66–67, 420–425 (2017). https://doi.org/10.1016/j.microrel.2017.06.083

    Article  Google Scholar 

  7. G.Q. Lu, W. Li, Y. Mei, G. Chen, X. Li, X. Chen, Characterizations of nanosilver joints by rapid sintering at low temperature for power electronic packaging. IEEE Trans. Devices Mater. Reliab. 14(2), 623–629 (2014). https://doi.org/10.1063/1.3511688

    Article  Google Scholar 

  8. D. Wakuda, M. Hatamura, K. Suganuma, Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem. Phys. Lett. 441(4–6), 305–308 (2007). https://doi.org/10.1016/j.cplett.2007.05.033

    Article  Google Scholar 

  9. J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air. Mater. Des. 140, 64–72 (2018). https://doi.org/10.1016/j.matdes.2017.11.054

    Article  Google Scholar 

  10. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43(7), 2459–2466 (2014). https://doi.org/10.1007/s11664-014-3202-6

    Article  Google Scholar 

  11. H. Zheng, D. Berry, K.D.T. Ngo, G.Q. Lu, Chip-bonding on copper by pressureless sintering of nanosilver paste under controlled atmosphere. IEEE Trans. Compon. Packag. Technol. 4(3), 377–384 (2014). https://doi.org/10.1109/tcpmt.2013.2296882

    Google Scholar 

  12. A. Hanss, G. Elger, Residual free solder process for fluxless solder pastes. Solder. Surf. Mount Technol. 33(2), 118–128 (2017). https://doi.org/10.1108/SSMT-10-2017-0030

    Article  Google Scholar 

  13. L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, Thermomechanical assessment of die-attach materials for wide bandgap semiconductor devices and harsh environment applications. IEEE Trans. Power Electron. 29(5), 2261–2271 (2014). https://doi.org/10.1109/TPEL.2013.2279607

    Article  Google Scholar 

  14. W. Lin, Y.C. Lee, Study of fluxless soldering using formic acid vapor. IEEE Trans. Adv. Packag. 22(4), 592–601 (1999). https://doi.org/10.1109/6040.803451

    Article  Google Scholar 

  15. M. Hosseinpour, S. Fatemi, S.J. Ahmadi, Y. Oshima, M. Morimoto, M. Akizuki, Isotope tracing study on hydrogen donating capability of supercritical water assisted by formic acid to upgrade heavy oil: computer simulation vs experiment. Fuel 225, 161–173 (2018). https://doi.org/10.1016/j.fuel.2018.03.098

    Article  Google Scholar 

  16. H. Zhang, S. Nagao, K. Suganuma, Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain Growth kinetics of sintered porous Ag. J. Electron. Mater. 44(10), 3896–3903 (2015). https://doi.org/10.1007/s11664-015-3919-x

    Article  Google Scholar 

  17. H. Zhang, W. Li, Y. Gao, J. Jiu, K. Suganuma, Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. J. Electron. Mater. 46(8), 5201–5208 (2017). https://doi.org/10.1007/s11664-017-5525-6

    Article  Google Scholar 

  18. H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou, Silver nanoparticle paste for low-temperature bonding of copper. J. Electr. Mater. 40(6), 1394–1402 (2011). https://doi.org/10.1007/s11664-011-1594-0

    Article  Google Scholar 

  19. S.C. Fu, M. Zhao, H. Shan, Y. Li, Fabrication of large-area interconnects by sintering of micron Ag paste. Mater. Lett. 226, 26–29 (2018). https://doi.org/10.1016/j.matlet.2018.05.023

    Article  Google Scholar 

  20. H. Yan, Y.H. Mei, X. Li, C. Ma, G.Q. Lu, A multichip phase-Leg IGBT module using nanosilver paste by pressure-less sintering in formic acid atmosphere. IEEE Trans. Electron Devices 65(10), 4499–5405 (2018). https://doi.org/10.1109/TED.2018.2867362

    Article  Google Scholar 

  21. S. Fu, Y. Mei, X. Li, C. Ma, G.Q. Lu, A multichip phase-leg IGBT module bonded by pressureless sintering of nanosilver paste. IEEE Trans. Devices Mater. Reliab. 17(1), 146–156 (2017). https://doi.org/10.1109/TDMR.2016.2633813

    Article  Google Scholar 

  22. E. Deng, Z. Zhao, P. Zhang, J. Li, Y. Huang, Study on the method to measure the junction-to-case thermal resistance of press-pack IGBTs. IEEE Trans. Power Electron. 33(5), 4352–4361 (2018). https://doi.org/10.1109/TPEL.2017.2718245

    Article  Google Scholar 

  23. G. Bai, Guofeng. Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection. Diss. Virginia Tech, 2005. http://hdl.handle.net/10919/29409

  24. J. Yan, G. Zou, A. Hu, Y.N. Zhou, Preparation of PVP coated cu NPs and the application for low-temperature bonding. J. Mater. Chem. 21, 15981–15986 (2011). https://doi.org/10.1007/s11664-011-1594-0

    Article  Google Scholar 

  25. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. J. Appl. Phys. 97(15), 153117-153117-3 (2010). https://doi.org/10.1063/1.3502604

    Google Scholar 

  26. W. Li, L. Li, Y. Gao, D. Hu, C.F. Li, H. Zhang, J. Jiu, S. Nagao, K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: microstructure, resistivity, oxidation resistance, and long-term stability. J. Alloy. Compd. 732, 240–247 (2014). https://doi.org/10.1088/0957-4484/25/26/265601

    Article  Google Scholar 

  27. S. Inaba, Theoretical study of water cluster catalyzed decomposition of formic acid. J. Phys. Chem. A 118, 3026–3038 (2014). https://doi.org/10.1021/jp5021406

    Article  Google Scholar 

  28. J. Yan, G. Zou, A. Wu, J. Ren, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Mater. 66(8), 582–585 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.007

    Article  Google Scholar 

  29. I. Kim, J. Kim, The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors. J. Appl. Techno. 108(10), 102807-1–102807-5 (2010). https://doi.org/10.1063/1.3511688

    Google Scholar 

  30. F. Hermerschmidt, D. Burmeister, G. Ligorio, S.M. Pozov, R. Ward, S.A. Choulis, E.J.W. List-Kratochvil, Truly low temperature sintering of printed copper ink using formic acid. Adv. Mater. Phys. 3(12), 1800146 (2018). https://doi.org/10.1002/admt.201800146

    Google Scholar 

  31. J. Francl, W.D. Kingery, Thermal conductivity experimental investigation of effect of porosity on thermal conductivity. J. Am. Ceram. Soc 37(2), 99–107 (1954). https://doi.org/10.1111/j.1551-2916.1954.tb20108.x

    Article  Google Scholar 

  32. H. Yan, Y. Mei, X. Li, P. Zhang, G.Q. Lu, Degradation of high power single emitter laser modules using nanosilver paste in continuous pulse conditions. Microelectron. Reliab. 55(12), 2532–2541 (2015). https://doi.org/10.1016/j.microrel.2015.07.037

    Article  Google Scholar 

  33. J. Feng, Y. Mei, X. Li, G.Q. Lu, Characterizations of a proposed 3300-V press-pack IGBT module using nanosilver paste for high-voltage applications. IEEE J. Em. Sel. Top. 6(4), 2245–2253 (2018). https://doi.org/10.1109/jestpe.2018.2820046

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51877147), the Science Challenge Project (No. TZ2018003), and the Tianjin Municipal Natural Science Foundation (No. 17JCYBJC19200). Dr. Yunhui Mei is the corresponding author of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hui Mei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Mei, YH., Wang, M. et al. Pressureless sintering multi-scale Ag paste by a commercial vacuum reflowing furnace for massive production of power modules. J Mater Sci: Mater Electron 30, 9634–9641 (2019). https://doi.org/10.1007/s10854-019-01297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01297-x

Navigation