Skip to main content

Advertisement

Log in

Laser sintering mechanism and shear performance of Cu–Ag–Cu joints with mixed bimodal size Ag nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to obtain Ag nanoparticles (NPs) sintered Cu–Cu joints with better mechanical properties in a relative short time and under a suitable pressure, a laser sintering process and a novel paste prepared by mixed Ag NPs (19 and 62 nm in diameters) were utilized and studied. The results indicated that joints with low porosities were fabricated within 15 s’ laser irradiation. By increasing laser power and sintering time, shear strength of the joints increased obviously. Shear strength of joints with 30% (mass ratio) 62 nm NPs was the highest and could reach 32 MPa when the samples were sintered at 60 W for 15 s under 5 MPa. The enhanced mechanical properties of the joints could be attributed to small NPs that could fill pores between larger NPs and improve initial packing density of the mixed particles. The results indicated that the mixed pastes had excellent potentials as alternative die-attach materials for high temperature power device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.Y. Lee, X. Lu, Q. Lin, Appl. Phys. Lett. 106, 104 (2015)

    Google Scholar 

  2. M. Willander, M. Friesel, Q.U. Wahab, B. Straumal, J. Mater. Sci. Mater. Electron. 17, 1 (2006)

    Article  Google Scholar 

  3. Z. Huang, Y. Zhang, B. Zhao, F. Yang, J. Jiang, G. Deng, B. Li, H. Liang, Y. Chang, J. Song, J. Mater. Sci. Mater. Electron. 27, 1738 (2016)

    Article  Google Scholar 

  4. S. Pareek, M. Sharma, S. Lal, J.K. Quamara, J. Mater. Sci. Mater. Electron. 29, 13043 (2018)

    Article  Google Scholar 

  5. Z. Wang, W. Liu, C. Wang, J. Electron. Mater. 45, 267 (2016)

    Article  Google Scholar 

  6. S. Wang, Y. Tian, C. Wang, C. Hang, J. Electrochem. Soc. 165, D328 (2018)

    Article  Google Scholar 

  7. S. Wang, Y. Tian, C. Hang, C. Wang, Sci. Rep. 8, 5260 (2018)

    Article  Google Scholar 

  8. D.-Y. Shin, Y. Lee, C.H. Kim, Thin Solid Films 517, 6112 (2009)

    Article  Google Scholar 

  9. W. Guo, Z. Zeng, X. Zhang, P. Peng, S. Tang, J. Nanomater. 2015, (2015)

  10. R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)

    Article  Google Scholar 

  11. Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, D. Kim, Nanotechnology 19, (2008)

  12. Y. Zuo, J. Shen, H. Xu, R. Gao, Mater. Lett. 199, 13 (2017)

    Article  Google Scholar 

  13. X. Liu, Z. Zheng, C. Wang, W. Liu, R. An, W. Zhang, J. Mater. Sci. Mater. Electron. 28, 8206 (2017)

    Article  Google Scholar 

  14. X. Liu, C. Wang, W. Liu, Z. Zheng, M. Li, J. Mater. Sci. Mater. Electron. 28, 5446 (2017)

    Article  Google Scholar 

  15. Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, C. Wang, RSC Adv. 6, 91783 (2016)

    Article  Google Scholar 

  16. S.J. Kim, E.A. Stach, C.A. Handwerker, Appl. Phys. Lett. 96, (2010)

  17. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005). (review 23)

    Article  Google Scholar 

  18. T.G. Lei, J.N. Calata, G. Lu, X. Chen, S. Luo, Integr. Power Syst. 33, 98. (CIPS), 2008 5th International Conference (2010)

  19. M. Knoerr, A. Schletz, 6th International Conference Integrated Power Electronics System (CIPS’2010), March 16–18, 2010, Nurnberg, Ger. 16 (2010)

  20. L.A. Navarro, X. Perpiña, M. Vellvehi, X. Jordà, Ing. Mecãnica Tecnol. y Desarro. 4, 97 (2012)

    Google Scholar 

  21. J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582 (2012)

    Article  Google Scholar 

  22. S. Fernandez-Robledo, J. Nekarda, A. Büchler, Sol. Energy Mater. Sol. Cells 161, 397–406 (2017)

    Article  Google Scholar 

  23. N. Yang, S. Li, X. Yuan, C. Liu, X. Ye, G. Liu, H. Li, J. Mater. Sci. Mater. Electron. 29, 8210 (2018)

    Article  Google Scholar 

  24. M. Li, Y. Xiao, Z. Zhang, J. Yu, ACS Appl. Mater. Interfaces 7, 9157 (2015)

    Article  Google Scholar 

  25. N. Nishioka, S. Hamabe, T. Murakami, T. Kitagawa, J. Appl. Polym. Sci. 69, 2133 (1998)

    Article  Google Scholar 

  26. X. Liu, W. Liu, C. Wang, Z. Zheng, J. Mater. Sci. Mater. Electron. 45, 5436 (2016)

    Article  Google Scholar 

  27. X. Chen, R. Li, K. Qi, G.-Q. Lu, J. Electron. Mater. 37, 1574 (2008)

    Article  Google Scholar 

  28. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, Open Surf. Sci. J. 3, 70 (2010)

    Article  Google Scholar 

  29. Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, C.S. Tan, Appl. Phys. Lett. 108, 263103 (2016)

    Article  Google Scholar 

  30. A. Wonisch, T. Kraft, M. Moseler, H. Riedel, J. Am. Ceram. Soc. 92, 1428 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51375003 and 51505104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zheng or Chunqing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Y., Zheng, Z. et al. Laser sintering mechanism and shear performance of Cu–Ag–Cu joints with mixed bimodal size Ag nanoparticles. J Mater Sci: Mater Electron 30, 7787–7793 (2019). https://doi.org/10.1007/s10854-019-01094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01094-6

Navigation