Skip to main content
Log in

Preparation and electrochemical properties of nanoparticle structural LiFePO4/C by Sol–Gel method as cathode material for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, LiFePO4/C nanocomposites with higher capacity and cycle performance are synthesized by sol–gel method using FeCl2·4H2O, H3PO4, Li2CO3, and Citric acid as the starting materials. LiFePO4/C cathode materials with different grain size and electrochemical properties were obtained by changing the calcination temperature of LiFePO4/C precursor prepared by sol–gel method. Specially, the LiFePO4/C precursor prepared by sol–gel method was heated to 700 °C for 12 h under nitrogen atmosphere, and the nanoparticle structural LiFePO4/C was obtained. The first discharge specific capacity is 156.5 mAh g−1 at a charging current of 0.2 C. The first discharge specific capacity is 124.5 mAh g−1 at a charging current of 1 C, and after the 250th cycles, the discharge specific capacity is 120.7 mAh g−1, the retention rate of discharge specific capacity is 96.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Sun, H. Cao, X. Zhang et al., Spent lead-acid battery recycling in China—a review and sustainable analyses on mass flow of lead. Waste Manag. 64, 190–201 (2017)

    Article  CAS  Google Scholar 

  2. B. Hariprakash, A.K. Shukla, S. Venugoplan, Secondary batteries—nickel systems | nickel–metal hydride: overview. Encycl. Electrochem. Power Sources (2009). https://doi.org/10.1016/B978-044452745-5.00158-1

    Article  Google Scholar 

  3. T.K. Ying, X.P. Gao, W.K. Hu et al., Studies on rechargeable NiMH batteries. Int. J. Hydrogen Energy 31(4), 525–530 (2006)

    Article  CAS  Google Scholar 

  4. N. Fujioka, A. Taniguchi, et al., Development of nickel/metal-hydride batteries for EVs and HEVs. J. Power Sources 100(1), 117–124 (2001)

    Google Scholar 

  5. L. Cheng, Physical problems involved in lithium ion batteries. Physical 27(6), 354–357 (1998) (in Chinese)

    Google Scholar 

  6. S. Bai, S. Mao, S. Zhu et al., Improved rate and cycling performances of electrodes based on BiFeO3 nanoflakes by compositing with organic pectin for advanced rechargeable Na-Ion batteries. ACS Appl. Nano Mater. 1(3), 1291–1299 (2018)

    Google Scholar 

  7. D. Xu, P. Wang, B. Shen, Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram. Int. 42(4), 5331–5338 (2015)

    Google Scholar 

  8. P.P. Prosini, M. Carewska, S. Scaccia et al., Long-term cyclability of nanostructured LiFePO4. Electrochim. Acta 48(28), 4205–4211 (2003)

    Article  CAS  Google Scholar 

  9. J. Qian, M. Zhou, Y. Cao et al., Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J.Phys.Chem.C 114(8), 3477–3482 (2011)

    Article  CAS  Google Scholar 

  10. F. Yu, J. Zhang, Y. Yang et al., Porous micro-spherical aggregates of LiFePO4/C nanocomposites: a novel and simple template-free concept and synthesis via sol–gel-spray drying method. J. Power Sources 195(19), 6873–6878 (2010)

    Article  CAS  Google Scholar 

  11. X. Lou, Y. Zhang, Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries. J. Mater. Chem. 21(12), 4156 (2011)

    Article  CAS  Google Scholar 

  12. A. Yamada, M. Hosoya, S.C. Chung et al., Olivine-type cathodes: achievements and problems. J. Power Sources 119(6), 232–238 (2003)

    Article  CAS  Google Scholar 

  13. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002)

    Article  CAS  Google Scholar 

  14. A. Yamada, S.C. Chung, Crystal chemistry of the olivine-type Li(MnyFe1 − y)PO4and (MnyFe1 − y)PO4 as possible 4V cathode materials for lithium batteries. J. Electrochem. Soc. 148(8), A960–A967 (2001)

    Article  CAS  Google Scholar 

  15. K.S. Park, J.T. Son, H.T. Chung et al., Surface modification by silver coating for improving electrochemical properties of LiFePO 4. J. Shangqiu Vocat. Tech. Col. 129(5), 311–314 (2008)

    Google Scholar 

  16. R. Dominko, M. Bele, M. Gaberscek et al., Porous olivine composites synthesized by sol–gel technique. J. Power Sources 153(2), 274–280 (2006)

    Article  CAS  Google Scholar 

  17. X. Dong, P. Wang, B. Shen, Synthesis and characterization of sulfur-doped carbon decorated LiFePO 4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram. Int. 42(4), 5331–5338 (2016)

    Article  CAS  Google Scholar 

  18. H. Huang, S.C. Yin, L.F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4(10), A170–A172 (2001)

    Article  CAS  Google Scholar 

  19. S. Tobishima, M. Takahashi, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics Diffus. React. 148(3), 283–289 (2002)

    Google Scholar 

  20. H. Liu, Z. Wang, X. Li et al., Synthesis and electrochemical properties of olivine LiFePO4prepared by a carbothermal reduction method. J. Power Sources 184(2), 469–472 (2008)

    Article  CAS  Google Scholar 

  21. Q. Gu, X. Gu, W. Gao, Research progress of lithium iron phosphate used as cathode materia. Anhui Chem. Ind. 37(4), 13–15 (2011) (in Chinese)

    CAS  Google Scholar 

  22. K. Naoi, K. Kisu, E. Iwama et al., Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO\r, 4\r, material for hybrid supercapacitor applications. Energy Environ. Sci. 9(6), 2143–2151 (2016)

    Article  Google Scholar 

  23. K.F. Hsu, S.Y. Tsay, B.J. Hwang, Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J. Mater. Chem. 14(17), 2690–2695 (2004)

    Article  CAS  Google Scholar 

  24. C. Wang Fuqing, Wu Jian, Minghao, Y. Baolian, Propylene oxide-assisted fast sol–gel synthesis of mesoporous and nano-structured LiFePO4/C cathode materials. Ionics 19(3), 451–460 (2013)

    Article  CAS  Google Scholar 

  25. H.P. Liu, Z.X. Wang, X.H. Li et al., synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J. Power Sources, 184(2), 469–472 (2008)

    Article  CAS  Google Scholar 

  26. L.B. Kong, P. Zhang, M.C. Liu et al., Fabrication of promising LiFePO4/C composite with a core–shell structure by amoderate in situ carbothermal reduction method. Electrochim. Acta 70, 19–24 (2012)

    Article  CAS  Google Scholar 

  27. I. Rahayu, S. Hidayat, L. Aryadi, Synthesis of LiFePO4/Pani/C composite as a cathode material for lithium ion battery. AIP Conf. Proc. 1712(1), (2016)

  28. K. Naoi, K. Kisu, E. Iwama et al., Ultrafast charge–discharge characteristics of a nanosized core–shell structured LiFePO4 material for hybrid supercapacitor applications. Energy Environ. Sci. 9(6), 2143–2151 (2016)

    Article  CAS  Google Scholar 

  29. J.K. Kim, J.W. Choi, G.S. Chauhan et al., Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta 53(28), 8258–8264 (2008)

    Article  CAS  Google Scholar 

  30. R. Dominko, J.M. Goupil, M. Bele et al., Impact of LiFePO4/C composites porosity on their electrochemical performance. J. Electrochem. Soc. 152(5), 858–863 (2005)

    Article  CAS  Google Scholar 

  31. R. Dominko, M. Bele, M. Gaberscek et al., Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J. Electrochem. Soc. 152(3), 607–610 (2005)

    Article  CAS  Google Scholar 

  32. G. Qin, Q. Ma, C. Wang, A porous C/LiFePO 4 /multiwalled carbon nanotubes cathode material for Lithium ion batteries. Electrochim. Acta 115(3), 407–415 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National International Technology Cooperation Plan (Grant No. 2014DFR50570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Dong, G., Kang, J. et al. Preparation and electrochemical properties of nanoparticle structural LiFePO4/C by Sol–Gel method as cathode material for lithium ion batteries. J Mater Sci: Mater Electron 30, 6593–6600 (2019). https://doi.org/10.1007/s10854-019-00966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00966-1

Navigation