Skip to main content
Log in

Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanofluids (commonly known as ferrofluids) have captured the great attention of the researchers due to their various kinds of applications such as heat transfer, hyperthermia treatments, targeted drug delivery etc. The present experimental investigations deal with the thermoacoustic behaviour of the water based nanofluids of nickel ferrites. The magnetic nickel ferrite nanoparticles were produced by the simple and inexpensive chemical co-precipitation route. The prepared nanoparticles were exposed to different characterization tools for structural, morphological, compositional and magnetic properties analysis. X-ray diffraction analysis with Rietveld refinement confirmed the single phasic nature with nanometric crystallite size of the prepared nanoparticles. Scanning electron microscope images revealed the spherical and nanocrystalline morphology of the prepared nanoparticles. The M-H plot recorded at room temperature revealed the superparamagnetic nature of the nanoparticles. Further, the co-precipitated nickel ferrite nanoparticles with different concentrations were utilized for the preparation of the water based magnetic nanofluids. Colloidal stability of the prepared nanofluids was analyzed by UV–Vis spectroscopy technique and it revealed the stability over 11 days without separation in phase. The temperature dependent thermoacoustic properties of the prepared nanofluids were analyzed through Ultrasonic Interferometer. The interaction between particle–particle and particle–fluid are explained on the basis of thermo-acoustic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Angayarkanni, J. Philip, Review on thermal properties of nanofluids: recent developments. Adv. Colloid Interface Sci. 225, (2015) 146–176

    Article  Google Scholar 

  2. J.K. Patel, K. Parekh, Effect of carrier and particle concentration on ultrasound properties of magnetic nanofluids. Ultrasonics 55, 26–32 (2015)

    Article  Google Scholar 

  3. A.R. Chavan, R.R. Chiller, P.B. Kharat, K. Jadhav, Effect of Annealing temperature on structural, morphological, optical and magnetic properties of NiFe2O4 thin films. J. Supercond. Novel Magn. (2018). https://doi.org/10.1007/s10948-018-4565-3

    Google Scholar 

  4. J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0. 5Fe2. 5O4, in AIP Conference Proceedings, AIP Publishing, pp. 050067 (2018)

  5. M.V. Shisode, A.V. Humbe, P.B. Kharat, K. Jadhav, Influence of Ba2+ on opto-electric properties of nanocrystalline BiFeO3 multiferroic. J. Electron. Mater. https://doi.org/10.1007/s11664-018-6715-6 (2018)

    Google Scholar 

  6. S.B. Kale, B. Sandeep, M.N. Somvanshi, S.D. Sarnaik, S.J. More, Shukla, K.M. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. In: AIP Conference Proceedings, vol. 1953, no. 1, p. 030193. AIP Publishing (2018)

  7. P.G. Undre, B. Prashant, R.V. Kharat, Kathare, K.M. Jadhav, Ferromagnetism in Cu2+ doped ZnO nanoparticles and their physical properties. J. Mater. Sci. https://doi.org/10.1007/s10854-019-00688-4 (2019)

    Google Scholar 

  8. P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water-based NiFe2O4 ferrofluid. In: AIP Conference Proceedings, AIP Publishing, pp. 050122 (2017)

  9. P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature-dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. In: AIP Conference Proceedings, AIP Publishing, pp. 050044 (2018)

  10. B. Nigam, S. Mittal, A. Prakash, S. Satsangi, P. Mahto, B.P. Swain, Synthesis and Characterization of Fe3O4 Nanoparticles for Nanofluid Applications-A Review, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012187 (2018)

  11. M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2 + doped BiFeO3 nanoparticles synthesized via sol-gel method. In: AIP Conference Proceedings, AIP Publishing, pp. 030276 (2018)

  12. A. Yasinskiy, J. Navas, T. Aguilar, R. Alcántara, J.J. Gallardo, A. Sánchez-Coronilla, E.I. Martín, D. De Los Santos, C. Fernández-Lorenzo, Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants. Renew. Energy 119, 809–819 (2018)

    Article  Google Scholar 

  13. J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti 4 + ions substituted Li 0.5 Fe2.5 O4 nanoparticles. J. Mater. Sci. 29, 8601–8609 (2018)

    Google Scholar 

  14. J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0. 5Fe2. 5O4 nanoparticles. J. Mater. Sci. 28, 17254–17261 (2017)

    Google Scholar 

  15. A.V. Humbe, P.B. Kharat, A.C. Nawle, K. Jadhav, Nanocrystalline Ni 0.70 – x Cu x Zn 0.30 Fe 2 O 4 with 0 ≤ x ≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. J. Mater. Sci. 29, 3467–3481 (2018)

    Google Scholar 

  16. P.B. Kharat, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Preparation and thermophysical investigations of CoFe2O4-based nanofluid: a potential heat transfer agent. J. Supercond. Novel Magn. (2018) https://doi.org/10.1007/s10948-018-4711-y

    Google Scholar 

  17. A. Bhattad, J. Sarkar, P. Ghosh, Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew. Sustain. Energy Rev. 82, 3656–3669 (2018)

    Article  Google Scholar 

  18. I. Mahbubul, E.B. Elcioglu, R. Saidur, M. Amalina, Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason. Sonochem. 37, 360–367 (2017)

    Article  Google Scholar 

  19. S. Umar, F. Sulaiman, N. Abdullah, S.N. Mohamad, Investigation of the effect of pH adjustment on the stability of nanofluid. In: AIP Conference Proceedings, AIP Publishing, pp. 020031 (2018)

  20. M.N. Rashin, J. Hemalatha, Ultrasonics—An Effective Non-invasive Tool to Characterize Nanofluids, in Modeling, Methodologies, and Tools for Molecular and Nano-scale Communications. Springer, Berlin (2017), pp. 379–399

    Book  Google Scholar 

  21. M. Leena, S. Srinivasan, Effects of rare earth doped on thermal conductivity of ZnO-water nanofluid by ultrasonic velocity measurements. Mater. Lett. 219, 220–224 (2018)

    Article  Google Scholar 

  22. B. Bellich, A. Gamini, J.W. Brady, A. Cesàro, Physico-chemical properties of aqueous drug solutions: from the basic thermodynamics to the advanced experimental and simulation results. Int. J. Pharm. 540, 65–77 (2018)

    Article  Google Scholar 

  23. M. Leena, S. Srinivasan, A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids. J. Therm. Anal. Calorim. 131, 1987–1998 (2018)

    Article  Google Scholar 

  24. P.B. Kharat, A.R. Chavan, A.V. Humbe, K. Jadhav, Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-0386-1

    Google Scholar 

  25. K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)

    Article  Google Scholar 

  26. M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54, 834–840 (2014)

    Article  Google Scholar 

  27. R. Paladhi, R. Singh, Miscibility and interaction studies on some aqueous polymer blend solutions by ultrasonic and rheological techniques. J. Appl. Polym. Sci. 51, 1559–1565 (1994)

    Article  Google Scholar 

  28. P.B. Kharat, A.V. Humbe, J.S. Kounsalye, K. Jadhav, Thermophysical investigations of ultrasonically assisted magnetic nanofluids for heat transfer, J. Supercond. Novel Magn. (2018) https://doi.org/10.1007/s10948-018-4819-0

    Google Scholar 

  29. S. Ayyappan, S. Mahadevan, P. Chandramohan, M. Srinivasan, J. Philip, B. Raj, Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C 114, 6334–6341 (2010)

    Article  Google Scholar 

  30. T.H. Santos, J.P. Grilo, F.J. Loureiro, D.P. Fagg, F.C. Fonseca, D.A. Macedo, Structure, densification and electrical properties of Gd3+ and Cu2+ co-doped ceria solid electrolytes for SOFC applications: effects of Gd2O3 content. Ceram. Int. 44, 2745–2751 (2018)

    Article  Google Scholar 

  31. L. Kumar, P. Kumar, V. Kuncser, S. Greculeasa, B. Sahoo, M. Kar, Strain-induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018)

    Article  Google Scholar 

  32. K. Srinivasamurthy, J. Angadi, S. Kubrin, S. Matteppanavar, D. Sarychev, P.M. Kumar, H.W. Azalea, B. Rudraswamy, Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram. Int. 44, 9194–9203 (2018)

    Article  Google Scholar 

  33. J. Mosayebi, M. Kiyasatfar, S. Laurent, Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthc. Mater. 6, 1700306 (2017)

    Article  Google Scholar 

  34. M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)

    Article  Google Scholar 

  35. M. Raja, R. Vijayan, P. Dineshkumar, M. Venkatesan, Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain. Energy Rev. 64, 163–173 (2016)

    Article  Google Scholar 

  36. M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)

    Article  Google Scholar 

  37. A. Verdaguer, G. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006)

    Article  Google Scholar 

  38. P.A. Tomar, V.R. Shaikh, K.J. Patil, Tetraalkylammonium bromide-water mixtures revisited: isothermal compressibility and internal pressure variation in limiting concentration range at 298.15 K. J. Chem. Thermodyn. 126, 119–125 (2018)

    Article  Google Scholar 

  39. E. Abu-Nada, Dissipative particle dynamics investigation of heat transfer mechanisms in Al2O3-water nanofluid. Int. J. Therm. Sci. 123, 58–72 (2018)

    Article  Google Scholar 

  40. A. Riaud, M. Baudoin, O.B. Matar, J.-L. Thomas, P. Brunet, On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method. J. Fluid Mech. 821, 384–420 (2017)

    Article  Google Scholar 

  41. M. Sheikholeslami, Numerical investigation for CuO-H2O nanofluid flow in a porous channel with a magnetic field using the mesoscopic method. J. Mol. Liq. 249, 739–746 (2018)

    Article  Google Scholar 

  42. Y. Ma, R. Mohebbi, M.M. Rashidi, O. Manca, Z. Yang, Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7518-y

    Google Scholar 

  43. L. Xiao, J. Li, D.F. Brougham, E.K. Fox, N. Feliu, A. Bushmelev, A. Schmidt, N. Mertens, F. Kiessling, M. Valldor, Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5, 6315–6324 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant B. Kharat or K. M. Jadhav.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharat, P.B., More, S.D., Somvanshi, S.B. et al. Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. J Mater Sci: Mater Electron 30, 6564–6574 (2019). https://doi.org/10.1007/s10854-019-00963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00963-4

Navigation