Skip to main content
Log in

Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spinel ferrites (SFs) show high potential in different aspects of modern technology. Particularly, copper ferrite represents a promising electrode material for supercapacitors and lithium based batteries. This paper is devoted to synthesizing and characterizing nanostructured copper substituted cobalt ferrites using an eco-friendly sol–gel method. Energy dispersive X-ray (EDX) and FT-IR analyses confirm the chemical composition and the successful formation of the cubic phase of CuFe2O4, respectively. XRD analyses based on Williamson–Hall (W–H) method indicate that the average crystallite size drops from 25.1 to 12.1 nm dependent on the Cu2+ content in the samples. Further, scanning electron microscopy (SEM) reveals that the CoFe2O4 (CFO) has a honeycomb structure, which gradually disappears with the soaring of Cu2+ content in the samples and converts to a porous sponge-like shape structure. The investigated copper substituted CFO holds a high specific surface area equals to 102.5139 m2 g−1 which satisfies the contaminant adsorption applications. The measured DC resistivity (ρDC = 108 Ω m) is high enough to meet the requirements of transformer cores applications. Due to the difference in the magnetic moment between Cu2+ and Co2+ cations, the coercivity of the CFO significantly depends on the Cu2+ content; it has declined by more than 50% for the system Co0.25Cu0.75Fe2O4 in comparison to the pure CFO (Hc = 1617.30 Gauss).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70—xCuxZn0. 30Fe2O4 spinel ferrite. Ceram. Int. 44(5), 5466–5472 (2018)

    Article  Google Scholar 

  2. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloy. Compd. 694, 777–791 (2017)

    Article  Google Scholar 

  3. J. Patil, D. Nadargi, I.S. Mulla, S. Suryavanshi, Spinel MgFe 2 O 4 thick films: a colloidal approach for developing gas sensors. Mater. Lett. 213, 27–30 (2018)

    Article  Google Scholar 

  4. S. Goh, C.H. Chia, S. Zakaria, M. Yusoff, C. Haw, S. Ahmadi, N. Huang, H. Lim, Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater. Chem. Phys. 120(1), 31–35 (2010)

    Article  Google Scholar 

  5. M. Sedlacik, V. Pavlinek, P. Peer, P. Filip, Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Trans. 43(18), 6919–6924 (2014)

    Article  Google Scholar 

  6. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Synthesis and magnetism of hierarchical iron oxide particles. Mater. Des. 86, 797–808 (2015)

    Article  Google Scholar 

  7. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15(12), 10091–10107 (2015)

    Article  Google Scholar 

  8. K.-H. Hellwege, L. Bornstein, Numerical Data and Functional Relationship in Science and Technology, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystal (Springer-Verlag Berlin, Heidelberg, New York, 1979)

    Google Scholar 

  9. I. Campbell, A. Fert, Ferromagnetic materials (EP Wolfarth, Amsterdam, 1982)

    Google Scholar 

  10. K. Khalaf, A. Al-Rawas, H. Widatallah, K. Al-Rashdi, A. Sellai, A. Gismelseed, M. Hashim, S. Jameel, M. Al-Ruqeishi, K. Al-Riyami, Influence of Zn2+ ions on the structural and electrical properties of Mg1—xZnxFeCrO4 spinels. J. Alloy. Compd. 657, 733–747 (2016)

    Article  Google Scholar 

  11. W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11(2), 479–484 (2009)

    Article  Google Scholar 

  12. V. Lakhani, B. Zhao, L. Wang, U. Trivedi, K. Modi, Negative magnetization, magnetic anisotropy and magnetic ordering studies on Al3+-substituted copper ferrite. J. Alloy. Compd. 509(14), 4861–4867 (2011)

    Article  Google Scholar 

  13. N. Moumen, M. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)

    Article  Google Scholar 

  14. C. Pham-Huu, N. Keller, C. Estournes, G. Ehret, J. Greneche, M. Ledoux, Microstructural investigation and magnetic properties of CoFe 2 O 4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Chem. Phys. 5(17), 3716–3723 (2003)

    Article  Google Scholar 

  15. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    Article  Google Scholar 

  16. M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40(1), 1147–1154 (2014)

    Article  Google Scholar 

  17. A. Samavati, A. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)

    Article  Google Scholar 

  18. B.C. Sekhar, G. Rao, O. Caltun, B.D. Lakshmi, B.P. Rao, P.S. Rao, Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J. Magn. Magn. Mater. 398, 59–63 (2016)

    Article  Google Scholar 

  19. M. Orojloo, P. Zolgharnein, M. Solimannejad, S. Amani, Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: Spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg. Chim. Acta 467, 227–237 (2017)

    Article  Google Scholar 

  20. M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Co (1 – x)] MxFe2O4;(M = Zn, Cu, Mn; x = 0, 05)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Google Scholar 

  21. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  Google Scholar 

  22. A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)

    Article  Google Scholar 

  23. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  Google Scholar 

  24. K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of Ni x Cu 0.1 Zn 0.9 – x Fe 2 O 4 nanoferrites: Role of constant mole percent of Cu 2 + dopant in place of Zn 2+. Ceram. Int. 43(11), 7984–7991 (2017)

    Article  Google Scholar 

  25. M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)

    Article  Google Scholar 

  26. A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    Article  Google Scholar 

  27. M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloy. Compd. 549, 348–357 (2013)

    Article  Google Scholar 

  28. V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)

    Article  Google Scholar 

  29. M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)

    Article  Google Scholar 

  30. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  Google Scholar 

  31. M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)

    Article  Google Scholar 

  32. A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0. 4Co0. 6Fe2O4) ferrites. Phys. B 507, 27–34 (2017)

    Article  Google Scholar 

  33. A. Ramakrishna, N. Murali, S. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C.S. Kumari, K. Samatha, V. Veeraiah, Studies on structural, magnetic, and DC electrical resistivity properties of Co0. 5M0. 37Cu0. 13Fe2O4 (M = Ni, Zn and Mg) ferrite nanoparticle systems, Adv. Powder Technol. 29, 2601–2607 (2018)

    Article  Google Scholar 

  34. M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe2 + CrxFe (2 – x) O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)

    Article  Google Scholar 

  35. M. Amer, T. Meaz, A. Mostafa, H. El-Ghazally, Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)

    Article  Google Scholar 

  36. R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li + substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  Google Scholar 

  37. C.C. Naik, S. Gaonkar, I. Furtado, A. Salker, Effect of Cu 2 + substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. J. Mater. Sci. Mater. Electron. 29(17), 14746–14761 (2018)

    Article  Google Scholar 

  38. S. Singhal, J. Singh, S. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co 1 – xNixFe 2 O 4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    Article  Google Scholar 

  39. J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater. Lett. 81, 52–54 (2012)

    Article  Google Scholar 

  40. M. Gabal, Y. Al Angari, M. Kadi, Structural and magnetic properties of nanocrystalline Ni1 – xCuxFe2O4 prepared through oxalates precursors. Polyhedron 30(6), 1185–1190 (2011)

    Article  Google Scholar 

  41. K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of Cobalt-Nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)

    Article  Google Scholar 

  42. K.V. Babu, G.S. Kumar, K. Jalaiah, P.T. Shibeshi, Effects of copper substitution on the microstructural, electrical and magnetic properties of Ni0. 7Co0. 3-xCuxFe2O4 ferrites. J. Phys. Chem. Solids 118, 172–185 (2018)

    Article  Google Scholar 

  43. R. Devan, Y. Kolekar, B. Chougule, Effect of cobalt substitution on the properties of nickel–copper ferrite. J. Phys. Condens. Matter. 18(43), 9809 (2006)

    Article  Google Scholar 

  44. M. Kurian, A. Appukkuttan, A.K. Paul, D.S. Nair, Influence of synthesis conditions on the surface properties of cobalt copper nanoferrites. J. Aust. Ceram. Soc. 54(2), 199–204 (2018)

    Article  Google Scholar 

  45. M.N. Akhtar, A. Rahman, A. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0. 5 MgxZn0. 5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(5), 4357–4365 (2017)

    Article  Google Scholar 

  46. D. Jnaneshwara, D. Avadhani, B.D. Prasad, H. Nagabhushana, B. Nagabhushana, S. Sharma, S. Prashantha, C. Shivakumara, Role of Cu2 + ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 256–262 (2014)

    Article  Google Scholar 

  47. K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0. 1Zn0. 9 – xFe2O4 nanoferrites: Role of constant mole percent of Cu2 + dopant in place of Zn2+. Ceram. Int. 43(11), 7984–7991 (2017)

    Article  Google Scholar 

  48. K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3(1), 42 (2013)

    Article  Google Scholar 

  49. G. Mustafa, M. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, Investigation of structural and magnetic properties of Ce 3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloy. Compd. 618, 428–436 (2015)

    Article  Google Scholar 

  50. M. Dar, D. Varshney, Effect of d-block element Co2 + substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)

    Article  Google Scholar 

  51. Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29(20), 1602300 (2017)

    Article  Google Scholar 

  52. F. Dehghani, S. Hashemian, A. Shibani, Effect of calcination temperature for capability of MFe2O4 (M = Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. J. Ind. Eng. Chem. 48, 36–42 (2017)

    Article  Google Scholar 

  53. K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 372, 208–213 (2014)

    Article  Google Scholar 

  54. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)

    Article  Google Scholar 

  55. S. Patange, S.E. Shirsath, K. Lohar, S. Algude, S. Kamble, N. Kulkarni, D. Mane, K. Jadhav, Infrared spectral and elastic moduli study of NiFe 2 – x Cr x O 4 nanocrystalline ferrites. J. Magn. Magn. Mater. 325, 107–111 (2013)

    Article  Google Scholar 

  56. M. Amer, Structural and magnetic studies of the Co 1 + x Ti x Fe 2 (1 – x) O 4 ferrites. J. Magn. Magn. Mater. 426, 771–778 (2017)

    Article  Google Scholar 

  57. E. El-Ghazzawy, M. Amer, Structural, elastic and magnetic studies of the as-synthesized Co 1 – x Sr x Fe 2 O 4 nanoparticles. J. Alloy. Compd. 690, 293–303 (2017)

    Article  Google Scholar 

  58. W. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16(1), 62 (1953)

    Article  Google Scholar 

  59. K. Modi, M. Rangolia, M. Chhantbar, H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)

    Article  Google Scholar 

  60. V. Patil, S.E. Shirsath, S. More, S. Shukla, K. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488(1), 199–203 (2009)

    Article  Google Scholar 

  61. M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe 2 + CrxFe (2 – x) O 4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)

    Article  Google Scholar 

  62. R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3 + substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42(14), 16096–16102 (2016)

    Article  Google Scholar 

  63. M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E. Abdel-Khalek, M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial pathogenesis 127, 144–158 (2019)

    Article  Google Scholar 

  64. S. Algude, S. Patange, S.E. Shirsath, D. Mane, K. Jadhav, Elastic behaviour of Cr 3 + substituted Co–Zn ferrites. J. Magn. Magn. Mater. 350, 39–41 (2014)

    Article  Google Scholar 

  65. S.E. Shirsath, S. Patange, R. Kadam, M. Mane, K. Jadhav, Structure refinement, cation site location, spectral and elastic properties of Zn 2 + substituted NiFe 2 O 4. J. Mol. Struct. 1024, 77–83 (2012)

    Article  Google Scholar 

  66. R. Pawar, S. Desai, S. Patange, S. Jadhav, K. Jadhav, Inter-atomic bonding and dielectric polarization in Gd 3 + incorporated Co-Zn ferrite nanoparticles. Phys. B 510, 74–79 (2017)

    Article  Google Scholar 

  67. N. Abu-Elsaad, Elastic properties of germanium substituted lithium ferrite. J. Mol. Struct. 1075, 546–550 (2014)

    Article  Google Scholar 

  68. I. Ahmad, S.M. Shah, M.N. Ashiq, F. Nawaz, A. Shah, M. Siddiq, I. Fahim, S. Khan, Fabrication of Nd3 + and Mn2 + ions co-doped spinal strontium nanoferrites for high frequency device applications. J. Electron. Mater. 45(10), 4979–4988 (2016)

    Article  Google Scholar 

  69. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Studies of structural, morphological, electrical, and magnetic properties of Mg-substituted Co-ferrite materials synthesized using sol-gel autocombustion method. Phys. B 523, 24–30 (2017)

    Article  Google Scholar 

  70. A. Mostafa, E. Abdel-Khalek, W. Daoush, S. Moustfa, Study of some co-precipitated manganite perovskite samples-doped iron. J. Magn. Magn. Mater. 320(24), 3356–3360 (2008)

    Article  Google Scholar 

  71. C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of nickel on the electrical properties of nanostructured MnZn ferrite. J. Alloys Compd. 498(2), 203–206 (2010)

    Article  Google Scholar 

  72. L. Van Uitert, Dc resistivity in the nickel and nickel zinc ferrite system. J. Chem. Phys. 23(10), 1883–1887 (1955)

    Article  Google Scholar 

  73. K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, S. Ramarao, K. Rajasekhar, A.V. Rao, Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite. Phys. B 528, 18–23 (2018)

    Article  Google Scholar 

  74. M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co1 – xZnxFe2O4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)

    Article  Google Scholar 

  75. O. Hemeda, M. El-Saadawy, Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J. Magn. Magn. Mater. 256(1–3), 63–68 (2003)

    Article  Google Scholar 

  76. A. Tawfik, S. Olofa, The diffusion coefficient of vacancies and jump length of electrons in zinc doped manganese ferrite. J. Magn. Magn. Mater. 174(1–2), 133–136 (1997)

    Article  Google Scholar 

  77. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, I. Ali, Synthesis, electrical and magnetic properties of Pr-substituted mn ferrites for high-frequency applications. J. Electron. Mater. 46(3), 1826–1835 (2017)

    Article  Google Scholar 

  78. M.T. Farid, I. Ahmad, M. Kanwal, I. Ali, Effect of praseodymium ions on manganese based spinel ferrites, Chin. J. Phys. 55, 813–824 (2017)

    Article  Google Scholar 

  79. P.P. Naik, R. Tangsali, Enduring effect of rare earth (Nd3+) doping and γ-radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloy. Compd. 723, 266–275 (2017)

    Article  Google Scholar 

  80. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Electrical resistivity studies of Cr doped Mg nano-ferrites. Mater. Discov. 2, 50–54 (2015)

    Article  Google Scholar 

  81. M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co 1 – x Zn x Fe 2 O 4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)

    Article  Google Scholar 

  82. X. Guoxi, X. Yuebin, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater. Lett. 164, 444–448 (2016)

    Article  Google Scholar 

  83. H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)

    Article  Google Scholar 

  84. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)

    Article  Google Scholar 

  85. K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M.A. El-sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Materials Science Unit, Radiation Physics Department, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project Synthesizing and Characterizations of Nanostructured Magnetic Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. A. Abdel Maksoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksoud, M.I.A.A., El-ghandour, A., El-Sayyad, G.S. et al. Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J Mater Sci: Mater Electron 30, 4908–4919 (2019). https://doi.org/10.1007/s10854-019-00785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00785-4

Navigation